

MicroNet Covered Embolic Prevention Carotid Stent System: From CARENET and PARADIGM Studies To Routine Clinical Practice

Piotr Musialek, MD DPhil

Jagiellonian University Dept. of Cardiac & Vascular Diseases John Paul II Hospital, Krakow, Poland

Disclosure Statement of Financial Interest

Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below.

Affiliation/Financial Relationship

- Grant/Research Support
- Consulting Fees/Honoraria

Company

- ABBOTT
- ABBOTT, Balton, InspireMD, Medtronic

CGuard [™] embolic prevention stent

J Am Coll Cardiol Intv 2015;8:1229-34 Mandatory DW-MRI

A Prospective, Multicenter Study of a Novel Mesh-Covered Carotid Stent

The CGuard CARENET Trial

(Carotid Embolic Protection Using MicroNet)

Joachim Schofer, MD,* Piotr Musiałek, MD, DPнп.,† Klaudija Bijuklic, MD,* Ralf Kolvenbach, MD,‡ Mariusz Trystula, MD,† Zbigniew Siudak, MD,†§ Horst Sievert, MD||

RESULTS The primary combined endpoint was the procedure success of the CGuard system and the number and volume of new lesions on the ipsilateral side assessed by diffusion-weighted magnetic resonance imaging at 48 h post-procedure and at 30 days. The secondary endpoint was 30-day major adverse cardiac or cerebrovascular events (death, stroke, or myocardial infarction). Protection devices were used in all procedures. Procedure success was 100%, with 0% procedural complications. The 30-day major adverse cardiac or cerebrovascular events rate was 0%. New ipsilateral ischemic lesions at 48 h occurred in 37.0% of patients and the average lesion volume was 0.039 ± 0.08 cm³. The 30-day diffusion-weighted magnetic resonance imaging showed complete resolution of all but 1 periprocedural lesion and only 1 new minor (0.116 cm³) lesion in relation to the 48-h scan.

PARADIGM & PARADIGM-EXTEND CAROTID PARADIGM PARADIGM PARADIGM PARADIGM-EXTEND

Musialek P et al. Impact of routine micronet-covered embolic prevention stent system use on contemporary carotid revascularization: All-comer PARADIGM Study. *JACC* 2015;66(suppl):B33

Prior to CAS

24h after **30 d** after CAS

ROUTINE CLINICAL PRACTICE 2015⁺

P. Musialek @ VEITH 2015

CAS (and CEA) are –and will remain– emboli-generating procedures

Effect of the Distal-Balloon Protection System on **Microembolization During Carotid Stenting** Nadim Al-Mubarak, MD; Gary S. Roubin, MD, PhD; Jiri J. Vitek, MD, PhD; Sriram S. Iyer, MD; Gishel New, MD; Martin B. Leon, MD

P. Musialek @ VEITH 2015

<u>Post-procedural</u> Embolization with conventional carotid stents DW-MRI post CAS

Mean total lesion area

Schofer J et al, JACC Cardiovasc interv 2008

Does Free Cell Area Influence the Outcome in Carotid Artery Stenting?

M. Bosiers,^{1*} G. de Donato,² K. Deloose,¹ J. Verbist,³ P. Peeters,³ F. Castriota,⁴ A. Cremonesi⁴ and C. Setacci⁴

Overview of event rates related to the different stents

n = 3179 consecutive CAS patients

	Total population			Symptoma	Symptomatic population			Asymptomatic population		
	Patients	All events	Post-procedur events	al Patients	All events	Post-procedural events	Patients	All events	Post-procedural events	
Stent name										
X-act		1.9%	1.9%		2.2%	2.2%		1.7%	1.7%	
Nexstent		3.3%	3.3%		0.0%	0.0%		4.2%	4.2%	
Wallstent		2.3%	1.2%	7/2	2.3%	1.2%		2.3%	1.2%	
Precise		4.1%	3.1%	ZIJ	6.3%	4.9%		2.0%	1.3%	
Protégé		3.0%	3.0%	_	6.7%	6.7%		1.4%	1.4%	
Acculink		4.2%	3.7%	AS neuro	7.7%	7.1%		1.7%	1.2%	
Exponent		11.8%	5.9%	AS neuro	9.1%	9.1%		13.0%	4.3%	
Total	3179	2.83%	1.9%	events	3.6%	2.73%	1862	2.25%	1.3%	
			(:	stroke, TIA	()					

are POST-procedural

Eur J Vasc Endovasc Surg Vol 33, February 2007

I	Free cell area	Total p	opulation	Symptom	atic population
		All events	Post- procedural events	All events	Post- procedural events
<	<2.5 vs [2.5, 5] <2.5 vs [5, 7.5] <2.5 vs >7.5		1.00 0.072 0.006	1.00 0.048 0.0006	$1.00 \\ 0.024 \\ 2.8 \ 10^{-6}$

Eur J Vasc Endovasc Surg Vol 33, February 2007

Conventional Carotid Stent

Plaque protrusion may lead to early and late distal embolization

J. Schofer, P. Musialek et al. TCT 2014

Conventional Carotid Stent

Human Carotid OCT Image Courtesy Dr Juan Rigla, MD PhD Perceptual Imaging Lab, Univerity of Barcelona

Plage protrusion may lead to early and ate distal embolization

J. Schofer, P. Musialek et al. TCT 2014

Stct2014 J. S

. Schofer, P. Musialek et al. TCT 2014

NewYork-Presbyterian

CGuard[™] embolic prevention system

P. Musialek @ VEITH 2015

CGuard[™]– Carotid Embolic Prevention System

System specifications				
Stent type	Nitinol – self expanding			
Micronet aperture size	150-180 μm			
Guidewire	0.014"			
Sizes - Diameter - Length	6-10mm 20-60mm			

NB. CGuard[™] EPS is not yet available in the US

CARENET – Study Design

Prospective, multi-center, all-comer

Objectives:

To evaluate the periprocedural safety and efficacy of the CGuard stent in the treatment of carotid lesions in thirty consecutive patients with symptomatic and asymptomatic carotid artery stenosis, suitable for CAS

Sites:

- Joachim Schofer (PI), Hamburg University Cardiovascular Center
- Piotr Musialek (Co-PI), Jagiellonian University Medical College
- Ralf Kolvenbach, Augusta Hospital
- Horst Sievert, Cardiovascular Center Frankfurt
 Endpoints:
- Acute /30-day Cerebral Embolization by DWI (incidence, volume)
- 30 day MACCE (death, stroke, MI)

Evaluation of PET Mesh Covered Stent in Patients with Carotid Artery Disease

The CARENET-Trial

(CAR otid Embolic protection using microNET)

Joachim Schofer, MD,PhD, Hamburg University CardiovascularCenter, Hamburg Germany Piotr Musialek, MD, PhD, Jagiellonian University Medical College at John Paul II Hospital, Krakow, Poland, Ralf Kolvenbach, MD, PhD, Augusta Hospital, Dusseldorf, Germany, Horst Sievert, MD, PhD, Cardiovascular Center Frankfurt, Frankfurt, Germany

JACC: CARDIOVASCULAR INTERVENTIONS © 2015 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION PUBLISHED BY ELSEVIER INC.

A Prospective, Multicenter Study of a Novel Mesh-Covered Carotid Stent

The CGuard CARENET Trial (Carotid Embolic Protection Using MicroNet)

Joachim Schofer, MD,* Piotr Musiałek, MD, DPHIL,† Klaudija Bijuklic, MD,* Ralf Kolvenbach, MD,‡ Mariusz Trystula, MD,† Zbigniew Siudak, MD,†§ Horst Sievert, MD||

ABSTRACT

OBJECTIVES This study sought to evaluate the feasibility of the CGuard Carotid Embolic Protective Stent system—a novel thin strut nitinol stent combined with a polyethylene terephthalate mesh covering designed to prevent embolic events from the target lesion in the treatment of carotid artery lesions in consecutive patients suitable for carotid artery stenting.

BACKGROUND The risk of cerebral embolization persists throughout the carotid artery stenting procedure and remains during the stent healing period.

METHODS A total of 30 consecutive patients (age 71.6 \pm 7.6 years, 63% male) meeting the conventional carotid artery stenting inclusion criteria were enrolled in 4 centers in Germany and Poland.

DW-MRI: the <u>unforgiving</u> testimony of what you've done to the TARGET ORGAN...

The Power of DW-MRI...

48h after LICA-CAS

M. Urbanczyk, P. Banys, Dept. Radiology, JP2 Hospital, Krakow, Poland

CARENET DW-MRI analysis^{*}

DW-MRI analysis @ 48 hours					
	CARENET (n=27)	PROFI (all) (n=62)	ICSS ⁺ (n=56)		
Incidence of new ipsilateral lesions	37.0%	66.2 %	68.0%		
Average lesion volume (cm ³)	0.039 10.08	.375	-		
Maximum lesion volume (cm ³)	0.445				
≈50% reduction					

in new ipsilateral lesion incidence

see patient fluxogram

*External Core Lab analysis (US)

Bijuklic et al. *JACC*, 2012; Bonati et. al, *Lancet Neurol* 2010 † bilateral lesions

J. Schofer, P. Musialek et al. JACC Intv 2015;8:1229-34

CARENET DW-MRI analysis^{*}

DW-MRI analysis @ 48 hours					
	CARENET (n=27)	PROFI (all) (n=62)	ICSS⁺ (n=56)		
Incidence of new ipsilateral lesions	37.0%	66.2%	68.0%		
Average lesion volume (cm ³)	0.039	0.375	-		
Maximum lesion volume (cm ³)	0.4 5)			

>10-fold reduction in cerebral lesion volume

see patient fluxogram

*External Core Lab analysis (US)

Bijuklic et al. *JACC*, 2012; Bonati et. al, *Lancet Neurol* 2010 † bilateral lesions

J. Schofer, P. Musialek et al. JACC Intv 2015;8:1229-34

P. Musialek @ VEITH 2015

Filter-protected CAS procedures CARENET vs PROFI: DW-MRI analysis

Filter-protected CAS procedures CARENET vs **PROFI**: DW-MRI analysis

n=27

* see patient fluxogram Bijuklic et al. JACC, 2012;59

J. Schofer, P. Musialek et al. JACC Intv 2015;8:1229-34 Bijuklic et al. (manuscript in preparation)

CARENET DW-MRI analysis^{*}

All but one peri-procedural ipsilateral lesions

RESOLVED

DW-MRI analysis @ 30 days*				
Incidence of new ipsilateral lesions	1			
Average lesion volume (cm ³)	0.08 ± 0.00			
Permanent lesions at 30 days	1			

*External Core Lab analysis (US)

J. Schofer, P. Musialek et al. JACC Intv 2015;8:1229-34

Anti - Embolic Carotid Stent

Plaque protrusion may lead to early and late distal embolization

J. Schofer, P. Musialek et al. TCT 2014

Columbia University Medical Center

Anti - Embolic Carotid Stent

CGuard Embolic-Prevention Stent OCT Image (human, iv vivo) Courtesy Dr Juan Rigla, MD PhD Perceptual Imaging Lab, Univerity of Barcelona JACC: CARDIOVASCULAR INTERVENTIONS © 2015 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION PUBLISHED BY ELSEVIER INC.

A Prospective, Multicenter Study of a Novel Mesh-Covered Carotid Stent

The CGuard CARENET Trial (Carotid Embolic Protection Using MicroNet)

Joachim Schofer, MD,* Piotr Musiałek, MD, DPhil,† Klaudija Bijuklic, MD,* Ralf Kolvenbach, MD,‡ Mariusz Trystula, MD,† Zbigniew Siudak, MD,†§ Horst Sievert, MD||

RESULTS The primary combined endpoint was the procedure success of the CGuard system and the number and volume of new lesions on the ipsilateral side assessed by diffusion-weighted magnetic resonance imaging at 48 h post-procedure and at 30 days. The secondary endpoint was 30-day major adverse cardiac or cerebrovascular events (death, stroke, or myocardial infarction). Protection devices were used in all procedures. Procedure success was 100%, with 0% procedural complications. The 30-day major adverse cardiac or cerebrovascular events rate was 0%. New ipsilateral ischemic lesions at 48 h occurred in 37.0% of patients and the average lesion volume was 0.039 ± 0.08 cm³. The 30-day diffusion-weighted magnetic resonance imaging showed complete resolution of all but 1 periprocedural lesion and only 1 new minor (0.116 cm³) lesion in relation to the 48-h scan.

CONCLUSIONS The use of the CGuard system in patients undergoing carotid artery stenting is feasible. In addition, the benefit of using CGuard may extend throughout the stent healing period. (J Am Coll Cardiol Intv 2015;8:1229–34)

Prospective evaluation of <u>A</u>II-comer pe<u>R</u>cutaneous c<u>A</u>roti<u>D</u> revascularization <u>I</u>n symptomatic and increased risk asymptomatic carotid artery stenosis using C<u>G</u>uard[™] <u>M</u>icronet covered embolic prevention stent system:

The PARADIGM Study

Musialek P et al. Impact of routine micronet-covered embolic prevention stent system use on contemporary carotid revascularization: All-comer PARADIGM Study. *JACC* 2015;66(suppl):B33

Objective

 to evaluate feasibility and outcome of <u>routine</u> anti-embolic stent system use in <u>unselected</u>, <u>consecutive</u> patients referred for carotid revascularization (<u>'all-comer</u>' study)

Methods: The CAS Procedure

- EPD use mandatory; EPD selection according to the 'Tailored CAS' algorithm^{*}
- Liberal postdilatation accepted in order to maximize potential for 'endovascular full reconstruction' (minimizing residual stenosis)
 - NB. 1. DWI evidence of effective MicroNet prevention against cerebral embolization (CARENET/PROFI)
 - 2. Residual stenosis after CAS as independent predictor of in-stent restenosis

Van Laanen J et al. *J Cardiovasc Surg*Cosottini M et al. *Stroke Res*Musialek P et al. *J Endovasc Ther*Wasser K et al. *J Neurol*

* Pieniazek P, Musialek P et al. *J Endovasc Ther* 2008;15:249-62. Cremonesi A et al. *EuroInervention* 2009;5:589-98. Pieniazek P, Musialek P et al. *J Endovasc Ther* 2009;16:744-51.

PARADIGM

Endpoints:

- feasibility of endovascular Tx in unselected referrals using the study device in otherwise routine practice
- device success (able to deliver + implant + <30% DS)
- procedure success (device success w/o clinical compl.) (external neurologist, external non-invasive cardiologist)
- clinical efficacy: MACNE (death/stroke/MI)
 in-stent velocities (Duplex)
 24-48h
 30 days
 12 months
 up to 5y

Musialek P et al. Impact of routine micronet-covered embolic prevention stent system use on contemporary carotid revascularization: All-comer PARADIGM Study. JACC 2015;66(suppl):B33

PARADIGM

 <u>ASYMPTOMATIC</u> patients treated interventionally only if at stroke risk

established lesion-level increased-risk crieria used:

- thrombus-containing
- tight, near-occlusive
- documented progressive
- irregular and/or ulcerated
- contralteral ICA occlusion/stroke
- asymptomatic ipsilateral brain infarct

AbuRahma A et al. *Ann Surg.* 2003;238:551-562. Ballotta E et al. *J Vasc Surg* 2007;45:516-522. Kakkos SK et al. (ACSRS) *J Vasc Surg.* 2009;49:902-909. Lovett JK et al. *Circulation* 2004;110:2190-97 Nicolaides AN et al. *J Vasc Surg* 2010;52:1486-96. Taussky P et al. *Neurosurg Focus* 2011;31:6-17.

Methods (cont'd)

Study Flow Chart (2)

73 Patients for carotid revascularization

Clinical characteristics of study patients (n=68)				
age, mean±SD (min–max)	69 ±7 (55–83)			
male, % (n)	66% (45)	45		
symptomatic, % (n) symptomatic ≤ 14 days, % (n) acutely symptomatic (emergent CAS) , % (n)	53% (36) 28% (19) 9% (6)			
index lesion (CAS) , % (n) RICA LICA RICA+LICA	52% (35) 44% (30) 4% (3)			
CAD, % (n)	65% (44)			
h/of MI, % (n)	27% (18)			
CABG or PCI in the past, % (n)	38% (26)			
PCI as bridge to CAS, % (n)	16% (11)			
AFib (h/o or chronic), % (n)	6% (4)			
diabetes, % (n)	35% (24)			
h/o neck or chest radiotherapy, % (n)	4% (3)			

PARADIGM: Results (1)

- Percutaneous treatment 100% using the intended MicroNet-covered embolic prevention stent system CGuard (ie, no other stents used during the study period)
- Device success 100% Procedure success 100% Transient Dopamine infusion **19%** (n=14) Debris in EPD **18%** (n=13) Access site complications **0%** (n=0) Vascular plug closure 45% (n=32)

PARADIGM: Results (2)

Index lesion qualitative characteristics (n=71 lesions)

	All (n=71)	Symptomatic (n=37)	Asymptomatic (n=34)	р
thrombus, % (n)	15% (11)	24% (9)	6% (2)	0.025
near occl./string, % (n)	21% (15)	30% (11)	12% (4)	0.084
proggressive*, % (n)	27% (19)	11% (4)	44% (15)	0.003
ulcerated, % (n)	41% (29)	46% (17)	35% (12)	0.470
irregular, % (n)	72% (51)	65% (24)	79% (27)	0.197
contralateral occl. , % (n)	17% (12)	22% (8)	35% (12)	0.291
highly calcific, % (n)	23% (16)	14% (5)	35% (12)	0.050
asymptomatic ipsilat. brain embolization/infarct	N/A	N/A	32% (11)	N/A

* verified on imaging

CoreLab-Quantified

ICA reference diameter
Lesion length

4.99 ± 0.36mm (from 4.27 to 6.02mm) **19.9 ± 5.8mm** (from 8.19 to 30.25mm)

PARADIGM: Results (3)

Index lesion quantitative characteristics (n=71 lesions)

	All (n=71 lesions)	Symptomatic n=37	Asymptomatic n=34	р	
Before CAS					
PSV, m/s	3.8±1.3	3.7±1.1	3.8±1.5	0.862	
EDV, m/s	1.3 ± 0.7	1.4 ± 0.6	1.3±0.8	0.687	
Diameter stenosis % (QA)	82 ± 9	79±9	84 ± 9	0.021	
CAS					
EPD type Proximal* Distal**	35% (25) 65% (46)	44% (16) 56% (21)	26% (9) 74% (25)	0.092	
post-dilat balloon# peak pressure, mmHg	18.4±3.4	17.5±3.6	19.2 ± 2.9	0.037	
After CAS					
Stent length (QA) [§] Nominal 30mm (min-max) Nominal 40mm (min-max)	29.66 ± 0.30 (28.73-30.07) 39.73 ± 0.34 (38.88-40.22)	29.66±0.28 (29.02-30.07) 39.69±0.41 (38.88-40.22)	29.65 ± 0.32 (28.73-30.02) 39.77 ± 0.28 (39.14-40.04)	NA	
Residual diam. stenosis	7 ± 4%	5 ± 4%	7 ± 5%	0.257	
in-stent PSV, m/s	0.70±0.28	0.66±0.29	0.74±0.27	0.266	
in-stent EDV, m/s	0.17±0.07	0.17±0.07	0.18±0.07	0.457	

* Emboshield (n=7); FilterWire (n=14); Spider (n=25)

** Gore FlowReversal (n=4) or flow reversal with MoMa (n=21)

(NB. mean flow reversal time was 6min 48s, from 5min 18s to 11min 2s) # Ø 4.5mm (n=5); Ø 5.0mm (n=36); Ø 5.5mm (n=29); Ø 6.0mm (n=1); § 30mm in 51 lesions; 40mm in 18 lesions (2 other lesions required two stents each)

PARADIGM: Results (4)

Death/stroke/MI @ 48h 0%

• Death/stroke/MI @ 30d 0%

Musialek P et al. Impact of routine micronet-covered embolic prevention stent system use on contemporary carotid revascularization: All-comer PARADIGM Study. *JACC* 2015;66(suppl):B33

CGuard 5 months follow-up

PARADIGM – EXTEND

Cardiovascular and Interventional Radiological Society of Europe

24.09.2015

5 PARADIGM – 101 recruitment completed

Patient #101 in 'PARADIGM-EXTEND' (a.k.a. 'PARADIGM 101')

P. Musialek @ VEITH 2015

A Prospective, Multicenter Study of a Novel Mesh-Covered Carotid Stent

The CGuard CARENET Trial (Carotid Embolic Protection Using MicroNet)

Joachim Schofer, MD,* Piotr Musiałek, MD, DPHIL,† Klaudija Bijuklic, MD,* Ralf Kolvenbach, MD,‡ Mariusz Trystula, MD,† Zbigniew Siudak, MD,†§ Horst Sievert, MD|| 30d data

ZERO Stroke/ MI/death

12mo data

CARENET 1 yr Follow Up Data

November 20, 2015

A Prospective, Multicenter Study of a Novel Mesh-Covered Carotid Stent

The CGuard CARENET Trial (Carotid Embolic Protection Using MicroNet)

Joachim Schofer, MD,* Piotr Musiałek, MD, DPhil,† Klaudija Bijuklic, MD,* Ralf Kolvenbach, MD,‡ Mariusz Trystula, MD,† Zbigniew Siudak, MD,†§ Horst Sievert, MD||

- 2 asymptomatic self-withdrawals @ 30 days
- **100% follow up** of the remaining patients

ZERO Stroke Deaths @ 12mo ZERO Strokes

Per-Protocol independent neurological assessment

- 1 pulmonary embolism death @ 5 mo
- 1 respiratory failure death @ 8 mo
- 1 malignant tumor death @ 9 mo

30d data

ZERO Stroke/ MI/death

12mo data

November 20, 2015

С Vascular Endovascular Issues Techniques Horizons

NO device-related adverse events NO procedure-related events

CARENET Multicenter Trial 12 mo data

New York, November 20, 2015

CARENET in-stent Peak Systolic Velocities

Hori

SSUES

OVASCUI

Е

2

* Setacci et. Al.. Grading Carotid Intrastent Restenosis of 814 CAS patients Stroke 2008 P. Musialek @ VEITH 2015

CARENET in-stent Peak Systolic Velocities

70% in-stent stenosis threshold*

Peak Systolic Velocity (cm,

300

NO in-stent restenosis concern

NO CGuard ECA patency concern

* Setacci et. Al.. Grading Carotid Intrastent Restenosis of 814 CAS patients Stroke 2008 P. Musialek @ VEITH 2015

Endovascular Solution for All-Comers

Endovascular Reconstruction of the Carotid Bifurcation

CGuard embolic prevention stent system

- Full respect of the carotid bifurcation anatomy -> 'endovascular anatomic reconstruction'
- Optimal performance across all lesion subsets (including high calcium/thrombus/string)

'The most OPEN of open-cell stent designs' and 'The most CLOSED of the closed-cell designs'

DW-MRI Evidence (CARENET)2015+ Clinical Evidence (CARENET, PARADIGM, PARADIGM-EXTEND)

P. Musialek @ VEITH 2015

This concept has been desired. And it works.

This is the future of Carotid Artery Station? revascularization?

CGuard Embolic-Prevention Stent Image Courtesy Dr Juan Rigla, MD PhD Perceptual Imaging Lab, Univerity of Barcelona

Carotid Revascularization 2015⁺ REALITY

Improved technology for CAS — better EPDs (flow reversal and proximal occlusion) and better stents (membrane-covered, ultra-closed cell, and biodegragable). Several issues may improve CAS outcomes, such as the introduction of new and better stents. An ex vivo study showed that use of a polyurethane membrane-covered stent resulted in lower cerebral embolization rates.69