المنتخر المحادات ومنتجوه الكروس والعر

London, 24th April 2024

1/8/2015 12:16:25 PM

23-25 APRIL 2024 TUESDAY-THURSDAY NEW VENUE, ExCel

Optical Coherence Tomography analysis of CAS and the benefits of micromesh stent design

Gianmarco de Donato

Full Professor of Vascular Surgery Chief, Vascular Surgery Unit & Vascular Surgery Residency Program University of Siena Italy

Speaker's name: Gianmarco de Donato

x I have the following potential conflicts of interest to report:

Research contracts

x Travel & educational grants (Boston Scientific, Terumo, Inspire, Endologix, Gore, Penumbra)

Employment in industry

Stockholder of a healthcare company

Owner of a healthcare company

⑦ Other(s)

I do not have any potential conflict of interest

Treatment options

Treatment options

• **ENDOVASCULAR** \rightarrow Plaque containment!

Courtesy of M. Makaroun, University of Pittsburg Courtesy of K. Balzer, Mulheim

OCT for Stent Selection

What is OCT?

OCT is a high-resolution imaging technology

J ENDOVASC THER 2012;19:303-311

♦ CLINICAL INVESTIGATION

Safety and Feasibility of Intravascular Optical Coherence Tomography Using a Nonocclusive Technique to Evaluate Carotid Plaques Before and After Stent Deployment

Carlo Setacci, MD; Gianmarco de Donato, MD; Francesco Setacci, MD; Giuseppe Galzerano, MD; Pasqualino Sirignano, MD; Alessandro Cappelli, MD; and Giancarlo Palasciano, MD

Department of Surgery, Vascular and Endovascular Surgery Unit, University of Siena, Italy.

Conclusions: Intravascular OCT during a nonocclusive flush appears to be feasible and safe in carotid arteries.

Mechanical injection of 20 ml 50% diluited contrast at 6ml/sec (to replace blood from the artery)

J Endovasc Ther 2012 Jun; 19(3): 303-11

303

Why do I use OCT in carotids?

UTILITY - results

OCT in carotids – new frontiers

2. Interaction between plaque & stent

Intraop control:

- Residual stenosis

- Stent apposition

- Stent malapposition
- Cell area modification
- Fibrous cap rupture
- Plaque micro-prolaps
- Branch side coverage

Follow-up control:

- neointimal thickness
- complete/incomplete stent struts coverage

Intraop control:

- Residual stenosis
- Stent apposition
- Stent malapposition
- Cell area modification
- Fibrous cap rupture
- Plaque micro-prolaps
- Branch side coverage

Follow-up control:

- neointimal thickness
- complete/incomplete stent struts coverage

floating struts

Intraop control:

- Residual stenosis
- Stent apposition
- Stent malapposition
- Cell area modification
- Fibrous cap rupture
- Plaque micro-prolaps
- Branch side coverage

Follow-up control:

- neointimal thickness
- complete/incomplete stent struts coverage

Intraop control:

- Residual stenosis
- Stent apposition
- Stent malapposition
- Cell area modification
- Fibrous cap rupture
- Plaque micro-prolaps
- Branch side coverage

Follow-up control:

- neointimal thickness
- complete/incomplete stent struts coverage

B

Intraop control:

- Residual stenosis
- Stent apposition
- Stent malapposition
- Cell area modification
- Fibrous cap rupture & Plaque micro-prolaps
- Branch side coverage

Follow-up control:

- neointimal thickness
- complete/incomplete stent struts coverage

High-resolution makes the difference

Low-resolution image

High-resolution image

Design

Prospective single center study

Objectives

- To evaluate the rate of:
 - stent malapposition
 - plaque prolapse
 - fibrous cap rupture

G. de Donato, F. Setacci, P. Sirignano, G. Galzerano, A.Cappelli, C. Setacci. OPTICAL COHERENCE TOMOGRAPHY AFTER CAROTID STENTING: RATE OF STENT MALAPPOSITION, PLAQUE PROLAPSE AND FIBROUS CAP RUPTURE ACCORDING TO STENT DESIGN. *Eur J Vasc Endovasc Surg 2013;45:579-87*

"Embedded"

Design

Prospective single center study

Objectives

- To evaluate the rate of:
 - stent malapposition
 - plaque prolapse
 - fibrous cap rupture

G. de Donato, F. Setacci, P. Sirignano, G. Galzerano, A.Cappelli, C. Setacci. OPTICAL COHERENCE TOMOGRAPHY AFTER CAROTID STENTING: RATE OF STENT MALAPPOSITION, PLAQUE PROLAPSE AND FIBROUS CAP RUPTURE ACCORDING TO STENT DESIGN. *Eur J Vasc Endovasc Surg 2013;45:579-87*

Design

Prospective single center study

Objectives

- To evaluate the rate of:
 - stent malapposition
 - plaque prolapse
 - fibrous cap rupture

G. de Donato, F. Setacci, P. Sirignano, G. Galzerano, A.Cappelli, C. Setacci. OPTICAL COHERENCE TOMOGRAPHY AFTER CAROTID STENTING: RATE OF STENT MALAPPOSITION, PLAQUE PROLAPSE AND FIBROUS CAP RUPTURE ACCORDING TO STENT DESIGN. *Eur J Vasc Endovasc Surg 2013;45:579-87*

Design

Prospective single center study

Objectives

To evaluate the rate of:

- stent malapposition
- plaque prolapse
- fibrous cap rupture

Eur J Vasc Endovasc Surg 2013;45:579-87

Materials and Methods

- 40 consecutive patients undergoing protected CAS + OCT
- Off-line analysis of OCT frames (dedicated core laboratory)
- Cross-sectional OCT images within the ICA were evaluated at 1 mm intervals.

Results:

Stent apposition

Stent apposition

Results: Plaque prolapse

Slice-based analysis (1 mm interval)

> J Clin Med. 2022 Aug 17:11(16):4819. doi: 10.3390/icm11164819. Review

Clinical Outcomes of Second- versus First-**Generation Carotid Stents: A Systematic Review and Meta-Analysis**

Adam Mazurek¹, Krzysztof Malinowski², Kenneth Rosenfield³, Laura Capoccia⁴, Francesco Speziale ⁴, Gianmarco de Donato ⁵, Carlo Setacci ⁵, Christian Wissgott ⁶, Pasqualino Sirignano⁴, Lukasz Tekieli⁷, Andrey Karpenko⁸, Waclaw Kuczmik⁹, Eugenio Stabile ¹⁰, David Christopher Metzger ¹¹, Max Amor ¹², Adnan H Siddigui ¹³ Antonio Micari¹⁴, Piotr Pieniażek¹⁷, Alberto Cremonesi¹⁵, Joachim Schofer¹⁶, Andrei Schmidt¹⁷, Piotr Musialek¹, CARMEN (CArotid Revascularization Systematic Reviews and MEta-aNalvses) Investigators Affiliations + expand PMID: 36013058 PMCID: PMC9409706 DOI: 10.3390/jcm11164819 **Free PMC article**

Data of 68,422 patients from 112 eligible studies were meta-analyzed

66

Vascular Surgery, University of Siena - Italy

Review > J Clin Med. 2022 Aug 17;11(16):4819. doi: 10.3390/jcm11164819.

Vascular Surgery, University of Siena - Italy

New carotid stent design

Terumo Road saver: Double layer nitinol design

The mesh stent

Inspire C-Guard

Outside PET micronet Cell size: 150-180 μm

New Generation, Mesh-Covered Stents

EuroIntervention. 2017 Aug 1. pii: EIJ-D-16-00866. doi: 10.4244/EIJ-D-16-00866. [Epub ahead of print]

Optical Coherence Tomography Assessment of New Generation Mesh- Covered Stents after Carotid Stenting.

Umemoto T¹, de Donato G, Pacchioni A, Reimers B, Ferrante G, Isobe M, Setacci C.

EuroIntervention. 2017 Aug

Outcomes

• No procedural neurological complications occurred (TIA/stroke/death 0% at 30 days).

Slice-based analysis

• Compared with conventional stents, the incidence of plaque prolapse was lower

EuroIntervention. 2017 Aug

Micromesh vs. Dual layer – OCT analysis

EuroIntervention. 2017 Aug

Stent CGUARD ROADSAVER All type Type 1-3 Type 4 All type Type 1-3 Type 4 Plaque type* Patient n. 11 5 6 5 5 0 70 82 Slice n. 166 96 82 0 Prolapse ,n 18 9 9 17 17 0 Prolapse, % 10.8 9.3 12.8 20.7 20.7 0

*According to the Gray-Weale classification²

UNIVERSITÀ DI SIENA 1240

Vascular Surgery, University of Siena - Italy

Conventional Carotid Stents

Partial and not uniform plaque coverage, leading to plaque protrusions or prolapse into the vessel lumen

DI SIENA 1240

Roadsaver / Casper

Uniform plaque coverage; no plaque protrusions; big support structures are dimed by the big metal amount in the lumen

CGuard[™] EPS

The MicroNet[™] **permanently covers** the plaque preventing "debris" passage through the mesh

CONCLUSION

From EBM to tailored surgery & precision medicine

Piazza del Campo, Siena – Italy

Vascular Surgery, University of Siena - Italy

