

Randomized controlled trial of conventional versus MicroNet-covered stent use in percutaneous neuroprotected carotid artery revascularization:

Peri-procedural and 30-day diffusion-weighted magnetic resonance imaging and clinical outcomes

The SIBERIA trial

Andrey Karpenko, Pavel Ignatenko, Savr Bugurov, Irina Popova E.N.Meshalkin National Medical Research Center, Novosibirsk, Russia

Pavel Ignatenko

Potential conflicts of interest

Speaker's name: Pavel Ignatenko

✓ I do not have any potential conflict of interest to declare

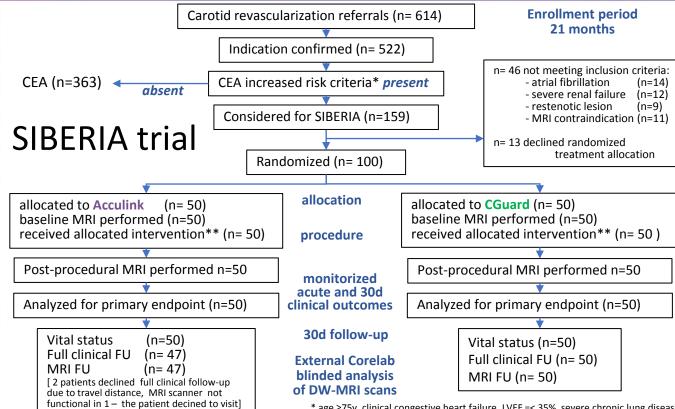
Pavel Ignatenko

Why this study?

- In relation to surgery, carotid artery stenting (CAS) using conventional stents is associated with an excess of strokes that are mostly minor; embolism through plaque/thrombus prolapse via the stent struts is an important contributor.
- A new-generation, MicroNet-covered, carotid stent designed to prevent plaque prolapse (CGuard) was introduced in 2014 (CE Mark) and has become available for routine use.
- Several single-arm studies have indicated that the MicroNetcovered stent use may (i) reduce peri-procedural, and (ii) eliminate post-procedural plaque-prolapse related cerebral embolism.
- Level 1 evidence has been lacking.

Pavel Ignatenko

What did we study?


- We evaluated peri-procedural and 30-day silent brain infarcts associated with the use of the MicroNet-covered (open-cell nitinol frame) stent (CGuard) versus a conventional (workhorse) open-cell nitinol stent (Acculink)
- A head-to-head randomized controlled clinical trial was designed and executed to obtain level 1 data.
- Peri-procedural and post-procedural cerebral embolism resulting in silent brain infarcts (an important measure of the procedure-related clinical stroke risk; *Eur Stroke J* 2019;4:127-143) was determined using diffusion-weighted cerebral MRI (DW-MRI endpoints of ipsilateral ischemic lesion incidence, lesion mean volume, and the total volume).

Pavel Ignatenko

How was the study executed?

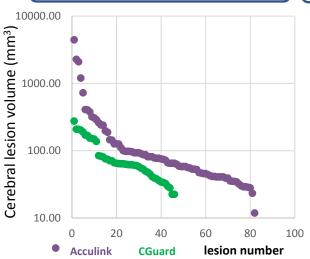
^{**} All CAS with EmboShield NAV6 as per the Centre routine

^{*} age ≥75y, clinical congestive heart failure, LVEF =< 35%, severe chronic lung disease, CAD requiring revascularization, uncontrolled diabetes, contralateral carotid artery occlusion, prior head/neck surgery or irradiation

Pavel Ignatenko

What are the essential study population and index lesion data?

0.27
0.65
0.61
0.67
1
1
0.79
1
0.67
0.18
0.46
0.75
0.11
0.72
0.77


PCR e-Course

Pavel Ignatenko

What are the essential results?

CGuard arm: Fewer lesions, smaller lesions

CGuard arm: **Smaller** average lesion volume per patient (pp) p=0.007

	Acculink	CGuard
Mean (mm3)	700	157
95% CI	(79; 1321)	(84; 229)
Median	138	82
[Q1;Q3]	[97; 574]	[60; 212]

ما منانیه ۸

CC

and smaller total lesion volume pp p=0.038

	Acculink	CGuard
Mean (mm3)	222	84
95% CI	(92; 352)	(66; 101)
Median	73	63
[Q1;Q3]	[42; 125]	[41; 84]

(CGuard arm: No MACCNE at 30 days)

	Acculink	CGuai
Stroke	2	0
Myocardial Infarction	1	0

No new DWI 'esions on 30-day scan

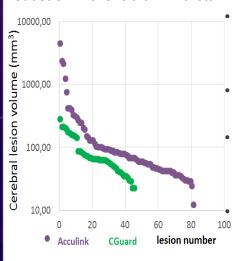
	Acculink	CGuard	
Number	6	0	p = 0.030

NB. data are for ipsilateral lesions as per the study protocol main endpoint

Pavel Ignatenko

Why is this important?

- CAS safety is critical for a **further growth** of the endovascular route of carotid revascularization on top of optimized medical therapy in primary and secondary stroke prevention.
- Our study data provide, for the first time, Level-1 evidence for a novel role of the MicroNet-covered carotid stent (stent as a peri- and post-procedural cerebral protector).
- New insights into the procedure-related vs. device(s)-related cerebral embolism with CAS with clinically-relevant, practical implications for further procedural improvement considerations and pathways.
- Evidence for a wide adoption of the new quality in CAS.



Pavel Ignatenko

The essentials to remember

The trial raw data:
MicroNet-covered stent
reduction in silent brain infarcts

Why?

Level 1 evidence for the MicroNet covered stent efficacy in reduction of peripricedural cerebral embolism and prevention of postprocedural cerebral embolism has not been available.

What?

We studied the incidence and magnitude of silent brain infarcts occurring peri-procedurally and by 30 days, using a novel (MicroNet-covered) open-cell frame carotid stent system versus a conventional (workhorse) open-cell carotid stent.

How?

Randomized controlled head2head comparison trial, with external monitoring of the data and external DW-MRI cerebral scan analysis.

What are the results?

The CGuard MicroNet stent use in consecutive unselected patients subjected to neuroprotected CAS was associated with an over 3-fold reduction in the procedure-generated cerebral lesion mean volume and with a totally abolished post-procedural cerebral embolism.

Why is this important?

These data will affect clinical practice by providing, for the first time, level 1 evidence for the benefit of a MicroNet-covered stent in reducing cerebral silent infarcts in neuroprotected CAS.

What is the core point for the audience to remember?

In a randomized clinical trial of neuroprotected CAS in asymptomatic and symptomatic patients, the MicroNet-covered carotid stent use was associated with a 3-fold reduction in the magnitude of peri-procedural silent brain infarcts and it abolished post-procedural infarcts – in relation to the workhorse (classic) carotid stent use.

PCR

PCRonline.com