

Randomized controlled trial of conventional versus Micronet-covered stent use in percutaneous neuroprotected carotid artery revascularization: Peri-procedural and 30-day diffusion-weighted magnetic resonance imaging and clinical outcomes

The SIBERIA trial

Andrey Karpenko, Pavel Ignatenko, Savr Bugurov, Irina Popova E. N. Meshalkin National Medical Research Center, Novosibirsk, Russia

Potential conflicts of interest

Pavel Ignatenko

Speaker's name : Pavel Ignatenko

✓ I do not have any potential conflict of interest to declare

•

Pavel Ignatenko In relation to surgery, carotid artery stenting (CAS) using conventional stents is associated with an excess of strokes that are mostly minor. Embolism of plaque/thrombus via the stent struts prolapse is an important contributor.

Why this study?

- A new-generation carotid stent designed to prevent plaque prolapse was introduced in 2014 (CGuard Micronet covered) and has become available for routine use.
- Several single-arm studies have indicated that the Micronet covered stent use may (i) reduce peri-procedural, and (ii) eliminate post-procedural plaque-prolapse related cerebral embolism.
- Level 1 evidence has been lacking.

Pavel Ignatenko

What did we study?

 We compared peri-procedural and 30-day silent brain infarcts associated with the use of the Micronet-covered (open-cell nitinol frame) stent (CGuard) versus a conventional (workhorse) open-cell nitinol stent (Acculink)

CGuard

Acculink

- A head-to-head randomized controlled clinical trial was designed and executed to obtain level 1 data.
- Peri-procedural and post-procedural cerebral embolism resulting in silent brain infarcts was determined using diffusion-weighted cerebral MRI (DW-MRI endpoints of ipsilateral ischemic lesion incidence, lesion mean volume, and the total volume), the measures of the procedurerelated clinical stroke risk (*Eur Stroke J* 2019;4:127-143).

Pavel Ignatenko

** All CAS with EmboShield NAV6 as per the Centre routine

* age ≥75y, clinical heart failure and/or LVEF ≤ 35%, severe chronic lung disease, CAD requiring revascularization, uncontrolled diabetes, contralateral carotid artery occlusion, prior head/neck surgery or irradiation

Pavel Ignatenko

What are the essential study population and index lesion data?

	variable	Acculink (n=50)	CGuard (n=50)	р
	age	67 [62;72]	65 [61;69]	0.27
	gender (male)	35 (70 %)	38 (76 %)	0.65
risk factors and comorbidities	coronary heart disease	42 (88 %)	39 (78 %)	0.61
	previous PCI	19 (38 %)	16 (32 %)	0.67
	previous CABG	6 (12 %)	6 (12 %)	1
	heart failure	42 (84 %)	44 (88 %)	1
	diabetes mellitus	8 (16 %)	10 (20 %)	0.79
	arterial hypertension	49 (98 %)	48 (96 %)	1
	current smoking	20 (40 %)	17 (34 %)	0.67
	peripheral artery disease	17 (34%)	15 (30%)	0.83
	ipsilateral stroke stroke ≤ 6m	6 (12%)	11 (22%)	0.18
	ipsilateral TIA ≤ 6m	3 (6 %)	5 (10 %)	0.46
	contralateral carotid artery stenosis	9 (18%)	18 (36%)	0.75
	contralateral carotid artery occlusion	3 (6%)	8 (16%)	0.11
index lesion characteristics	degree of stenosis (QCA, %)	76 [70;80]	75 [72;79]	0.72
	affected side right	27 (54 %)	30 (60%)	0.77

Data in [] are Q1;Q3

Pavel Ignatenko

Pavel Ignatenko

Why is this important?

- CAS safety is critical for a **further growth** of the endovascular route of carotid revascularization – on top of optimized medical therapy – in primary and secondary stroke prevention.
- Our study data provide, for the first time, Level-1 evidence for a novel role of the Micronet-covered carotid stent (stent as a peri- and post-procedural cerebral protector).
- New insights into the procedure-related vs. device(s)-related cerebral embolism with CAS with clinically-relevant, practical implications for further procedural improvement considerations and pathways.
- Evidence for a wide adoption of the **new quality in CAS**.

Pavel Ignatenko The trial raw data: MicroNET-covered stent reduction in silent brain infarcts

Whv?

Level 1 evidence for the MicroNet covered stent efficacy in reduction of peripricedural cerebral embolism and prevention of postprocedural cerebral embolism has not been available.

The essentials to remember

What?

We studied the incidence and magnitude of silent brain infarcts occurring peri-procedurally and by 30 days, using a novel (MicroNETcovered) open-cell frame carotid stent system versus a conventional (workhorse) open-cell carotid stent.

How?

Randomized controlled head2head comparison trial, with external monitoring of the data and external DW-MRI cerebral scan analysis.

What are the results?

The CGuard Micronet stent use in consecutive unselected patients subjected to neuroprotected CAS was associated with an over 3-fold reduction in the procedure-generated cerebral lesion mean volume and with a totally abolished post-procedural cerebral embolism.

Why is this important?

These data will affect clinical practice by providing, for the first time, level 1 evidence for the benefit of a Micronet-covered stent in reducing cerebral silent infarcts in neuroprotected CAS.

What is the core point for the audience to remember?

In a randomized clinical trial of neuroprotected CAS in asymptomatic and symptomatic patients, the MicroNET-covered carotid stent use was associated with a 3-fold reduction in the magnitude of periprocedural silent brain infarcts and it abolished post-procedural infarcts – in relation to the workhorse (classic) carotid stent use.

PCR

PCRonline.com