Carotid Angioplasty Evolution – 2018

Accumulating two-year clinical and duplex ultrasound evidence from the CGuard **PARADIGM-Extend** prospective academic trial: Durability of stroke prevention

P. Musiałek, A. Mazurek, M. Trystuła, A. Borratyńska, T. Tomaszewski, A. Lesniak-Sobelga, M. Brózda, P. Wilkołek, N. Dłużniewska, U. Gancarczyk, T. Drążkiewicz, A. Kozanecki, Ł. Partyka, P. Podolec

Jagiellonian University Dept of Cardiac & Vascular Diseases Dept. Vascular Surgery and Dept. Neurology John Paul II Hospital, and KCRI, Krakow, Poland

Potential conflicts of interest

Speaker's name:

Piotr Musialek

Advisory Board/Consulting Research Support InspireMD, Medtronic Abbott

NB. <u>PARADIGM and PARADIGM-Extend</u>: *Non-Industry Funded,* Investigator-Initiated, Academic research project – supported by the Jagiellonian University Medical College and 'For the Heart' Foundation in Krakow, Poland

clinical **Evidence**

10⁺ studies

CGuard Clinical Studies

- CARENET (MRI)
- PARADIGM
- Hamburg/Heide
- IRON-Guard
- TORINO (MRI)
- Milan (MRI substudy)
- PARADIGM-Extend
- CEA vs. TCAR-CGurad
- CGuard vs. Acculink RCT

Multi-specialty Multi-specialty INR Vascular Surgery INR Vascular Surgery Multi-specialty Vascular Surgery (DW-MRI)

2018 IRON-Guard II CGuard OPTIMAL CGuard PRO (n=500, Vascular Surgery)
(Sympt, IVUS, Multi-specialty)
(n=500, Vascular Surgery)

CGuard Clinical Studies

- **CARENET (MRI)**
- PARADIGM
- Hamburg/Heide
- IRON-Guard
- TORINO (MAL)
- Milan (MRI substudy)
- **PARADIGM-Extend**
- **CEA vs. TCAR-CGurad**
- **CGuard vs. Acculink RCT**

Multi-specialty **Multi-specialty** INR

cular Surgery

Vascular Surgery **Multi-specialty** Vascular Surgery (DW-MRI)

n=500_Vascular Surgery) **IRON-Guard II** 2018 (Smpt, VUS, Multi-specialty) CGuard OP-II n=500, Vascular Surgery) **CGuard PRO**

The Problem of Conventional Carotid Stents

Human carotid artery treated using a conventional stent; 3D OCT F Image courtesy Joan Rigla, MD PhD; Perceptual Imaging Lab, Univerity of Barcelona

<u>Post-procedural</u> Embolization with conventional carotid stents DW-MRI post CAS

Mean total lesion area

Timing of neuro-embolic events after CAS

PCR Role of CAS in 2018

CEA excludes the plaque

In CAS, the stent should exclude the plaque too

Conventional Carotid Stent

Anti - Embolic Carotid Stent

Anti - Embolic Carotid Stent

Plaque protrusion may lead to early and late distal embolization

J. Schofer, P. Musialek et al. TCT 2014

CGuard[™] embolic prevention system

CGuard[™]– Carotid Embolic Prevention System

CGuard EPS 90 days/pig

12-105 LCCA-S 3 13-1689-3 1.25x H&E.tif

CA-S 3 13-1689-3 10x H&E.tif

CGuard EPS 30 & 90 days / pig

Mean ± SD and Median Standard Histomorphology Parameters								
Parameter	Day 30				Day 90			
	BMS (n=3)		CGuard (n=9)		BMS (n=3)		CGuard (n=9)	
Injury (0-3)	0.00 ± 0.01	0.00	0.00 ± 0.01	0.00	0.01 ± 0.02	0.00	0.00 ± 0.01	0.00
Inflammation (0-3)	0.43 ± 0.23	0.51	0.41 ± 0.22	0.36	0.17 ± 0.16	0.11	0.09 ± 0.08	0.07
Neointimal Fibrin (0-3)	1.13 ± 0.23	1.00	0.82 ± 0.37	1.00	0.00 ± 0.00	0.00	0.00 ± 0.00	0.00
Adventitial Fibrosis (0-3)	0.00 ± 0.00	0.00	0.02 ± 0.07	0.00	0.00 ± 0.00	0.00	0.00 ± 0.00	0.00
Neointimal Maturation (0-3)	3.00 ± 0.00	3.00						
Endothelialization (0-4)	3.67 ± 0.42	3.80	3.62 ± 0.35	3.80	4.00 ± 0.00	4.00	4.00 ± 0.00	4.00

CA-S 3 13-1689-3 10x H&E.tif

BMS = non mesh-covered CGuard nitynol frame; InspireMD data / used with permission

Normal Long-Term Healing

mechanical **Properties**

RoadSaver / Casper

C. Wissgott and colleagues. *J Endovasc Ther.* 2015;22:634-39 C. Wissgott and colleagues. *J Endovasc Ther.* 2017;24:130-7

CGuard EPS

C. Wissgott and colleagues. *J Endovasc Ther.* 2015;22:634-39 C. Wissgott and colleagues. *J Endovasc Ther.* 2017;24:130-7

Radial Force as the PRECISE stent

- NO foreshortening/elongation
- Widely open-cell structure of the stent frame results in a FULL APPOSITION

Bending Stifness

Radial Force

JACC: CARDIOVASCULAR INTERVENTIONS © 2015 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION PUBLISHED BY ELSEVIER INC.

A Prospective, Multicenter Study of a Novel Mesh-Covered Carotid Stent

CGuard[™]

The CGuard CARENET Trial

(Carotid Embolic Protection Using MicroNet)

Joachim Schofer, MD,* Piotr Musiałek, MD, DPHIL,† Klaudija Bijuklic, MD,* Ralf Kolvenbach, MD,‡ Mariusz Trystula, MD,† Zbigniew Siudak, MD,†§ Horst Sievert, MD||

ABSTRACT

OBJECTIVES This study sought to evaluate the feasibility of the CGuard Carotid Embolic Protective Stent system—a novel thin strut nitinol stent combined with a polyethylene terephthalate mesh covering designed to prevent embolic events from the target lesion in the treatment of carotid artery lesions in consecutive patients suitable for carotid artery stenting.

BACKGROUND The risk of cerebral embolization persists throughout the carotid artery stenting procedure and remains during the stent healing period.

METHODS A total of 30 consecutive patients (age 71.6 \pm 7.6 years, 63% male) meeting the conventional carotid artery stenting inclusion criteria were enrolled in 4 centers in Germany and Poland.

JACC: CARDIOVASCULAR INTERVENTIONS © 2015 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION PUBLISHED BY ELSEVIER INC.

A Prospective, Multicenter Study of a Novel Mesh-Covered Carotid Stent CGuard™

(Carotid Embolic Protection Using MicroNet)

30d data

Joachim Schofer, MD,* Piotr Musiałek, MD, DPHIL,† Klaudija Bijuklic, MD,* Ralf Kolvenbach, MD,‡ Mariusz Trystula, MD,† Zbigniew Siudak, MD,†§ Horst Sievert, MD||

ABSTRACT OF THE ABSTRACT AT B/L, 24-48h after CAS, and at 30 days

OBJECTIVES This study sought to evaluate the feasibility of the CGuard Carotid Embolic Protective Stent system—a novel thin strut nitinol stent combined with a polyethylene terephthalate mesh covering designed to prevent embolic events from the target lesion in the treatment of carotid artery lesions in consecutive patients suitable for carotid artery stenting.

BACKGROUND The risk of cerebral embolization persists throughout the carotid artery stenting procedure and remains during the stent healing period.

METHODS A total of 30 consecutive patients (age 71.6 \pm 7.6 years, 63% male) meeting the conventional carotid artery stenting inclusion criteria were enrolled in 4 centers in Germany and Poland.

Filter-protected CAS procedures CARENET vs PROFI: DW-MRI analysis

Filter-protected CAS procedures CARENET vs PROFI: DW-MRI analysis

* see patient fluxogram Bijuklic et al. JACC, 2012;59

J. Schofer, P. Musialek et al. *JACC Intv* 2015;8:1229-34 Bijuklic et al. (manuscript in preparation)

CARENET DW-MRI analysis^{*}

All but one peri-procedural ipsilateral lesions

RESOLVED

DW-MRI analysis @ 30 days*							
Incidence of new ipsilateral lesions	1						
Average lesion volume (cm ³)	0.08 ± 0.00						
Permanent lesions at 30 days	1						

*External Core Lab analysis (US)

J. Schofer, P. Musialek et al. JACC Intv 2015;8:1229-34

Human 3D OCT, symptomatic lesion

CGuard™ EPS

P. Musialek, E. Stabile. *EuroIntervention* December 2017 Image courtesy Dr Joan Rigla, University of Barcelona Perceptual Lab

Musialek & Stabile EuroIntervention 2017

Tomyuki Umemoto et al. EuroIntervention 2017

F

Musialek & Stabile *EuroIntervention* 2017

Tomyuki Umemoto et al. *EuroIntervention* 2017

Musialek & Stabile EuroIntervention 2017

lumen

rox 1000 um

F

wall

<u>Intra</u>-procedural cerebral embolization is <u>minimized</u>

J. Schofer, P. Musialek, et al. JACC Interv 2015;8:1229-1234

- <u>Intra</u>-procedural cerebral embolization is <u>minimized</u>
- <u>Post-procedural procedural</u> cerebral embolization is <u>eliminated</u>

CGuard[™] OCT

Image courtesy Dr Joan Rigla, University of Barcelona Perceptual Lab

12 months

A Prospective, Multicenter Study of a Novel Mesh-Covered Carotid Stent

The CGuard CARENET Trial

(Carotid Embolic Protection Using MicroNet)

Joachim Schofer, MD,* Piotr Musiałek, MD, DPhil,† Klaudija Bijuklic, MD,* Ralf I Mariusz Trystula, MD,† Zbigniew Siudak, MD,†§ Horst Sievert, MD

No stroke/TIA(s)

 No ISR issue hesh cov

BACKGROUND The risk of cerebral embolization persists throughout the carotid a during the stent healing period.

(manuscript at review)

METHODS A total of 30 consecutive patients (age 71.6 \pm 7.6 years, 63% male) meeting stenting inclusion criteria were enrolled in 4 centers in Germany and Poland.

12 months

A Prospective, Multicenter Study of a Novel Mesh-Covered Carotid Stent

The CGuard CARENET Trial

(Carotid Embolic Protection Using MicroNet)

The PARADIGM Study

<u>P</u>rospective evaluation of <u>All-comer</u> pe<u>R</u>cutaneous c<u>A</u>roti<u>D</u> revascularization in symptomatic and <u>I</u>ncreased-risk asymptomatic carotid artery stenosis using the C<u>G</u>uard[™] <u>M</u>icronet-covered embolic prevention stent system

The PARADIGM Study

EuroIntervention 2016;12-online publish-ahead-of-print May 2016

CGuard™

Novel PARADIGM in carotid revascularisation: Prospective evaluation of All-comer peRcutaneous cArotiD revascularisation in symptomatic and Increased-risk asymptomatic carotid artery stenosis using CGuard[™] Micronet-covered embolic prevention stent system

Piotr Musialek^{1*}, MD, DPhil; Adam Mazurek¹, MD; Mariusz Trystula², MD, PhD;
Anna Borratynska³, MD, PhD; Agata Lesniak-Sobelga¹, MD, PhD; Malgorzata Urbanczyk⁴, MD;
R. Pawel Banys⁴, MSc; Andrzej Brzychczy², MD, PhD; Wojciech Zajdel⁵, MD, PhD;
Lukasz Partyka⁶, MD, PhD; Krzysztof Zmudka⁵, MD, PhD; Piotr Podolec¹, MD, PhD

1. Jagiellonian University Department of Cardiac & Vascular Diseases, John Paul II Hospital, Krakow, Poland; 2. Department of Vascular Surgery, John Paul II Hospital, Krakow, Poland; 3. Neurology Outpatient Department, John Paul II Hospital, Krakow, Poland; 4. Department of Radiology, John Paul II Hospital, Krakow, Poland; 5. Jagiellonian University Department of Interventional Cardiology, John Paul II Hospital, Krakow, Poland; 6. KCRI, Krakow, Poland

The PARADIGM study

target

100 consecutive CAS pts / 12mo*

* determined by typical yearly volume

Objective

 to evaluate feasibility and outcome of <u>routine</u> anti-embolic stent system use in <u>unselected</u>, <u>consecutive</u> patients referred for carotid revascularization (<u>'all-comer</u>' study)

P. Musialek, A. Mazurek et al. EuroIntervention 2016;12:e658-70 TCT 2016 Featured Research (PARADIGM design and 30-day outcome data)

2016

Table 1. Clinical characteristics of the study patients (n=101).

Age, mean±SD (min-max)	69±7 (51-86)		
Male, % (n)	70% (71)		
Symptomatic, % (n)	55% (55) 🗲		
Symptomatic ≤14 days, % (n)	22%* (12)		
Acutely symptomatic (emergent CAS), % (n)	14%* (9)		
Index lesion (CAS), % (n)			
RICA	51% (52)		
LICA	49% (49)		
RICA+LICA	5% (5)		
CAD, % (n)	63% (64)		
h/o MI, % (n)	32% (32)		
CABG or PCI in the past, % (n)	40% (40)		
PCI as bridge to CAS, % (n)	18% (18**)		
AFib (h/o or chronic), % (n)	9% (9)		
Diabetes, % (n)	41% (41)		
h/o neck or chest radiotherapy, % (n)	6% (6)		
*proportion of symptomatic patients; **simultaneo PCI+CAS in 4 patients; h/o: history of	us (one-stage)		

EuroIntervention 2016;12:e658-70

Table 2. Quantitative lesion characteristics (n=106), NPD type, CGuard MN-EPS in situ characteristics.

	All (n=106 lesions)	Symptomatic n=55	Asymptomatic n=51	<i>p</i> -value
Before CAS				~
PSV, m/s	3.7±1.2	3.7±1.1	3.7±1.2	0.964
EDV, m/s	1.2±0.5	1.1±0.5	1.2±0.5	0.268
Diameter stenosis % (QA)	83±9	80±9	86±9	0.002
CAS				
EPD type				
Proximal	46% (49)	56% (31)	35% (18)	0.030
Distal	54% (57)	44% (24)	65% (33)	
ICA reference diameter	* Em	boshield (n=11); FilterW	Vire (n=15); Spider (n=31)

4.99 ± 0.36mm (from 4.27 to 6.02 mm)

Gore FlowReversal (n=6) or flow reversal with MoMa (n=43);

(mean flow reversal time was 6min 35s, from 3min 51s to 11min 2s)

Lesion length 19.9 ± 5.8mm (from 8.19 to 30.25 mm)

Direct (primary) stenting in 9 (8.5%); predilatation in 97 (91.5%) lesions Postdil. balloon: ø 4.5mm (n=9); ø 5.0mm (n=55); ø 5.5mm (n=37); ø 6.0mm (n

EuroIntervention 2016;12:e658-70

TCT 2016 Featured Research

external Corelab

Table 2.(cont'd) CGuard MN-EPS in situ characteristics.

	All (n=106 lesions)	Symptomatic n=55	Asymptomatic n=51	<i>p</i> -value		
After CAS						
Stent length (QA, CoreLab)§				N/A		
Nominal 30 mm	29.82±0.68	29.83±0.76	29.80±0.59			
(min-max)	(27.83-32.62)	(27.83-32.62)	(28.83-31.89)			
Nominal 40 mm	39.89±0.59	39.80±0.70	39.97±0.51			
(min-max)	(38.88-41.43)	(38.88-41.43)	(39.14-41.01)			
Residual diameter stenosis	6.7±5%	6.1±5%	7.8±5%	0.262		
In-stent PSV, m/s	0.68±0.29	0.64±0.26	0.72±0.31	0.121		
in-stent EDV, m/s	0.18±0.08	0.16±0.07	0.19±0.08	0.087		
[§] In three cases two overlapping stents were used to cover the whole lesion length; these are not included in the in situ stent length evaluation. N/A: not applicable						

external Corelab analysis

\Rightarrow 'CAE-like' effect of CAS

EuroIntervention 2016;12:e658-70

systematic

CEA-like effect of CAS

EuroIntervention 2016;12:e658-70

PARADIGM

Clinical Results (MACNE) O peri-procedural death/major stroke/MI 0% 1 peri-procedural minor stroke* 0.9% O new clinical events by 30 days 0% (100% follow-up, independent neuro evaluation)

*One patient, with symptomatic RICA stenosis (minor right-hemispheric stroke 2 months prior to CAS), had **hypotonia** and transient, fluctuating cognitive dysfunction at 24-48h after CAS. The patient had additional neurologic evaluation on discharge (day 7) that showed **no change in NIH-SS [=3] and no change in modified Rankin scale [=1] against 48h (and baseline) evaluation**. CT scan on day 2 showed no new cerebral lesions but day 6 CT indicated **an extension of the prior lesion in the right hemisphere**.

The event, in **absence of right haemispheric symptoms and in absence of any clinical sequelae**, was CEC-adjudicated as 'minor stroke in relation to CAS'.

CGuard[™] EPS Carotid **PARADIGM** Study → 12mo Clinical Outcome Data

12month data

- 106 index arteries / 101 study subjects
- no patient withdrawals by 12 months
- 100% clinical
 - neurological 👌 12 month follow up
 - Duplex US

- 1 cardiac death @ 11mo (man 68y, heart failure death)
- 3 non-cardiac deaths @ 3mo, 5mo, 11mo
 - urosepsis (woman 73y)
 - pulmonary embolism (woman 67y)
 - microcellular pulmonary cancer (man 71y)

CGuard[™] EPS Carotid **PARADIGM** Study **12mo Clinical Outcome Data**

12month data

0% stroke 0% TIA 0% MI

between 30 days and 12 months

in n=101 / stroke-risk patients (55% symptomatic)

CGuard™ EPS Carotid **PARADIGM** Study **12mo Duplex Ultrasound Data**

* per stented ICAs/ patent (patient alive)

ct2016

PARADIGM – Extend continues as an ALL-Comer Study

- h/o 3 minor strokes (2003, June 2017, July 2017)
- diagnosed with LICA chronic occlusion (DUS, CT-angio)
- RICA 4.7/1.4 m/s, soft, highly irregular plaque suggestive thrombus
- MRI September 2017
- referral delayed to GI bleeding requiring transfusion
- currently recurrent TIAs from both L and R hemisphere...

?

RICA

(NB. LICA chronic occlusion)

Back pressure 58/47mmHg

(4min tolerance test)

P Musialek @ ePCR 2018

Final Result

Flow reversal time 7min 10sec Intolerance in the last 80sec (active aspiration still !! performed)

Patient A/S, discharged home @ Day2 post procedure

Normal stent image

Normal velocities

P Musialek @ ePCR 2018

PARADIGM – Extend

continues as an ALL-Comer Study

 251 patients / 263 arteries NeuroVascular Team decision-making on revascularization

May 2018 update

(2-year data)

- Age 51-87 years, 57.1% symptomatic
- Crossed the trial first follow-up window (30d)
- 100% CGuardEPS use
- Angiographic diameter stenosis was reduced from 83±9% to only 6.7±5% (p<0.001, 'CEA-like' effect of CAS)

• <u>By 30 days</u>

1 haemorrhagic transformation of prior ischaemic cerebral infarct, leading to **death – 0.4%**

By 30 days

1 haemorrhagic transformation of prior ischaemic cerebral infarct, leading to **death – 0.4%**

251 patients / 263 arteries

May 2018 update (2-year data)

- Clinical outcomes 1-12 months
 - **0** strokes or stroke-related deaths **0%**

<u>Clinical outcomes 12-24 months</u>

- 1 <u>cerebellar</u> stroke with de novo AFib
- **0** carotid-territory strokes or stroke-related deaths 0%

By 24 months

1 asymptomatic ISR – detected at 12 mo; treated with DEB-PTA no relapse by 24 mo

1 clinically silent stent occlusion in a patient who initiated neck radiotherapy course 2 months after CAS due to cancer relapse

Evolution of in-stent velocities in the <u>PARADIGM</u> Study

P Musialek @ ePCR 2018

euro

24-month data

PARADIGM @ 24 months Favourable Clinical Outcome

NO device-related adverse events NO procedure-related events

s u s t a i n e d stroke prevention

This concept has been desired.

This is the future of Carotid Artery Stenting

P Musialek @ ePCR 2018

This is the future of Carotid Artery Stenting

P Musialek @ ePCR 2018

This is the future of Carotid Artery evascularization revascularization PMusiek@epc.2018

Endovascular Solution for All-Comers

Endovascular Reconstruction of the Carotid Bifurcation Prevention of embolism, High radial force, Conformability

P Musialek @ ePCR 2018