Latest techniques for carotid revascularisation

MicroNET-covered Embolic Prevention Stent

Piotr Musialek

Jagiellonian University Dept. of Cardiac & Vascular Diseases John Paul II Hospital, Kraków, Poland

2022

Disclosure

Speaker name:

Piotr Musialek

I have the following potential conflicts of interest to report:

- Consulting: Abbott, InspireMD, Medtronic
- Employment in industry
- Stockholder of a healthcare company
- Owner of a healthcare company
- Other(s): Research support: Abbott, InspireMD, SilkRoad Proctoring: InspireMD, Medtronic CGUARDIANS FDA-IDE - CoPI
 - I do not have any potential conflict of interest

Open-cell Nitinol stent wrapped by a MicroNET sleeve

CGuard MicroNET – covered 2nd generation carotid stent

The **MOST** 'open' amongst open-cell stents (metallic FRAME) & the **MOST 'close'** amongst close-cell stents (MicroNET mesh)

UNIQUE mechanical properties

RESPECT of anatomy

FULL apposition

Wissgott JEVT 2016

NORMAL healing

CGuard MicroNET – covered 2nd generation carotid stent Nitinol scaffold open-cell size : 11.48 mm² MicroNET pore diameter/area: **165** μ m / 0.023–0.032 mm²

Respecting Anatomy

Respecting Anatomy

MicroNet Embolic Prevention

Study Population:

500 Consecutive, Unselected, Patients with

• SYMPTOMATIC

or

• Increased-Stroke-Risk ASYMPTOMATIC

atherosclerotic carotid stenosis

Hypotheses:

#1 30-d Death/Stroke <1%</pre>

#2 12-mo procedure*/device-related events <1%</pre>

*inclusive of any failure to prevent ipsilateral carotid-related stroke

Methods:

- Primarily-intended TF* CAS
- "Tailored" use of distal / proximal EPD
- Routine coronary-like stent optimization

100% Study data external monitoring (CRO)

Primary endpoint:

Composite of death, stroke (major/minor) and MI

in the periprocedural period (defined as the period from CAS admission to 48 hours after CAS or to CAS-related discharge, whichever was longer) and at 30 days

Key secondary endpoints:

- Death/stroke by 30 days
- Ipsilateral stroke by 12-months and 5-years
- Device success

Acute study device success: the ability to treat the index carotid lesion using the study device (CGuard-EPS) successfully delivered and deployed at the lesion site, obtaining residual diameter stenosis <30% by quantitative angiography.

Long-term device suscess: freedom from ISR/TLR by 12-mo/5-years

• Procedure success

- Acute procedural success, defined as device success in the absence of any periprocedural stroke, MI, or vascular complication that would require interventional management.
- 12-mo procedural success, defined as freedom from ipsilateral stroke and ISR
- 5-year procedural success, defined as freedom from ipsilateral stroke and ISR

Demographic characteristics of subjects

Variable	Measure/Level	Value	
Age	n	500	
	Mean(±SD)	69.96 (±8.14)	
Gender:	n	500	
	Female	137 (27.4%)	
	Male	363 (72.6%)	
Symptomatic status	n	500	
	no	201 (40.2%)	
	yes	299 (59.8%)	

Medical history

	PARADIGM 500 (n=500)		
Prior CABG	56 (11%)		
Prior PCI	137 (27%)		
Prior myocardial infarction	152 (30%)		
Atrial fibrillation	68 (13%)		
Previous neck or chest radiotherapy	35 (7%)		

Arteries/Procedures - 533

- TF 514 96.4%
- TR/TCR 19 3.6%
- Prox EPD 259 48.6%
- Dist EPD 274 51.4%
- Study device use 533 CAS 100% (NO CAS outside the study; ZERO any other stent use)

100% Study data external monitoring (CRO)

Adverse Clinical Events in PARADIGM 500

PARADIGM 500 (n=500)	Periprocedural	48 to 30 days	Up to 30 days (cumulative)	30d to 12 months	Up to 12 months (cumulative)
MACCE (MI, any stroke, death)	3	2	5	19	24
MI	1	0	1	2	3
major stroke – ipsilateral	0	0	0	0	0
major stroke – contralateral	0	0	0	1	1
minor stroke – ipsilateral	2	0	2	0	2
minor stroke – contralateral	0	0	0	0	0
retinal stroke	0	0	0	1	1
death	0	2	2	16	18

Deaths:

sepsis/urosepsis - 2, MI -1, PE -1, CHF -1, SCD -2, brain stem stroke -1, cancer -4, bleeding -1, multiple organ failure -1, sepsis -1, COVID-19 -3

ISR: 2

1 asympt. occlusion – larynx cancer relapse with RadioTx 2 months after CAS, 1 asymptomatic restenosis @12 – treated with DEB-PTA (no relapse)

LEIPZIG INTERVENTIONAL COURSE LINC 2022	PARADIGM-500 OUTCOMES		PARADIGM
[Device success	533/533	100 %
F	Procedure success	529/533	99.2%
3	30-d Death/Stroke	4/533	0.75%
3	30-d Death/Stroke/MI	5/533	0.94%
1	L2-mo freedom from ipsi stroke L2-mo freedom from ISR/TLR L2-mo freedom from procedure	480/482 e*	99.6% 99.6%
	/device-related events	478/482	99.2%

*inclusive of any failure to prevent ipsilateral carotid-related stroke (4 events: 2 perip. minor strokes, 1 bleeding-related death, 1 TLR)

HINT-LOLDMAN HA-2100 AM HINT-LM-214-31

Any death

CHF - 4, Car-1, PE-

3.100F0.3. weig-12

marge J1

PARADIGM-EXTEND is in all-comer, all-referrals-tracked study with no exclusion criteria other than lack of NeuroVascular Team-determined indication. Clinically asymptomatic patients receive revascularization only in case of increased-stroke-risk characteristics. Adverse events are independently adjudicated.

Correspond

Professor Piotr Musialek (EUD ID : 63035)

Jagiellonian Univ. Krakow, John Paul II Hosp., Dept. of Cardiac & Vascular Diseases, PL-31202 - Krakow Poland Phone : +48 126142287, +48126143399 Fax : +48 126143332; Email : pmusialek@szpitalip2 krakow.pl

Peter Schneider

Peter Schneider

* a **"CAS"** ≠ a **"CAS"**

HISTORICAL "CAS" is of HISTORICAL value :)

Peter Schneider

* a **"CAS" ≠** a **"CAS"**

HISTORICAL "CAS" is of **HISTORICAL** value :)

1° I am an admirerer of Dr. Peter Schneider! 2° I am a TCAR believerer (and user! :)

Peter Schneider

* a "CAS" ≠ a "CAS" HISTORICAL "CAS" is of HISTORICAL value :) "[CAS] Using second-generation stents such as the MicroNetcovered stent is very different from CAS a decade ago."

"Competent-operator CAS (including transfemoral/ transradial CAS), using embolic prevention stents combined with tailored use of intraprocedural proximal cerebral protection, may prove <u>superior</u> to surgery!"

1° I am an admirerer of Dr. Peter Schneider! 2° I am a TCAR believerer (and user! :) Eur J Vasc Endovasc Surg (2021) 61, 725-738

SYSTEMATIC REVIEW

Editor's Choice - Early and Late Outcomes after Transcarotid Revascularisation for Internal Carotid Artery Stenosis: A Systematic Review and Meta-Analysis

George C. Galyfos ****, Ioannis Tsoutsas ***. Theofanis Konstantopoulos *, Georgios Galanopoulos *, Frangiska Sigala *, Konstantinos Filis * Vassilios Papavassiliou

"Symptomatic patients had a higher risk of early stroke/TIA than asymptomatic patients (2.5% vs. 1.2%; odds ratio 1.99; 95% CI 1.01 -3.92)!"*

* TCAR using a single-layer (1st gen) Carotid Stent

"We need to remember that a patient's preference will always be with less invasive, but safe and effective, and long-term durable, treatments."

"Patients should have a say in treatment decision-making"

FDA-IDE Clinical Trial:

CGUARDIANS NCT 04900844

FDA-IDE Clinical Trial:

Co-PIsD. Christopher Metzger (US)DSMBG. Ansel – Chair, N. Hopkins, B. GershP. Musialek (Europe)CECM. Burket – Chair, R. Sakhulja, P. Faries

Standard FDA Inclusion/Exclusion criteria for Clinically Symptomatic or Asymptomatic CS (anatomic *or* clinical high-risk for CEA)

Primary Outcome Measure Composite of **D+S+MI ≤ 30** days *or* **ipsilateral stroke 31–365** days post-index procedure

Recruitment goal = 315 patients Study Centers = 18 US + 6 Europe (up to 40 total)

Multi Specialty: Interv. Cardiology, Vascular Surgery, Vascular Medicine/Angiology, Neurology, Neurosurgery

FDA-IDE Clinical Trial:

CGUARDIANS NCT 04900844

<u>Co-PIs</u> D. Christopher Metzger (US) P. Musialek (Europe)

Standard FDA Inclusion (anatomic or clinical ymptomatic or Asymptomatic CS

N. Hopkins, B. Gersh ., R. Sakhulja, P. Faries

Primary Outcome Me Composite of D+S+MI

.psilateral stroke 31–365 days post-index procedure

Recruitment goal = 315 µatients Study Centers = 18 US + 6 Europe (up to 40 total)

Multi Specialty: Interv. Cardiology, Vascular Surgery, Vascular Medicine/Angiology, Neurology, Neurosurgery

enrollment

FDA-IDE Clinical Trial: CGUARDIANS NCT 04900844

CGUARDIANS FDA IDE

Krakow JP2 June2, 2022

Patient #7

© 2021 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION

Randomized Controlled Trial of Conventional Versus MicroNet-Covered Stent in Carotid Artery Revascularization

Andrey Karpenko, MD, РнD,^a Savr Bugurov, MD,^a Pavel Ignatenko, MD, РнD,^a Vladimir Starodubtsev, MD, РнD,ⁱ Irina Popova, MD, РнD,^a Krzysztof Malinowski, MSc,^b Piotr Musialek, MD, DРнп.^c

Embolic Load to the Brain

Acculink (CREST study device)

MicroNet-Covered Stent - CGuard

© 2021 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION.

Randomized Controlled Trial of Conventional Versus MicroNet-Covered Stent in Carotid Artery Revascularization

Andrey Karpenko, MD, PHD,^a Savr Bugurov, MD,^a Pavel Ignatenko, MD, PHD,^a Vladimir Starodubtsev, MD, PHD,ⁱ Irina Popova, MD, PHD,^a Krzysztof Malinowski, MSc,^b Piotr Musialek, MD, DPHIL^c

Acculink (CREST study device)

12-mo Follow-up: *Similar Healing Profile*

MicroNet-Covered Stent - CGuard

Karpenko et al. (2022, at review) cf., Bugurov S LINC 2022 (Monday - June 6, 2022)

© 2021 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION.

Randomized Controlled Trial of Conventional Versus MicroNet-Covered Stent in Carotid Artery Revascularization

Andrey Karpenko, MD, PHD,^a Savr Bugurov, MD,^a Pavel Ignatenko, MD, PHD,^a Vladimir Starodubtsev, MD, PHD,ⁱ Irina Popova, MD, PHD,^a Krzysztof Malinowski, MSc,^b Piotr Musialek, MD, DPHЛ.^c

12-mo Follow-up: Similar Healing Profile... BUT

* Patient-related outcomes: death/stroke/MI/ISR

Karpenko et al. (2022, at review) cf., Bugurov S LINC 2022 (Monday - June 6, 2022)

© 2015 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION

LEIPZIG INTERVENTIONAL COURSE LINC 2022

A Prospective, Multicenter Study of CARENET Trial a Novel Mesh-Covered Carotid Stent

The CGuard CARENET Trial

(Carotid Embolic Protection Using MicroNet)

5-year follow-up

Musialek P et al. 2022 (at review)

"CAS" ≠ "CAS"

30-day Death/Stroke/MI

D Study SGS

FGS

FGS

1.5

worse than

30-day Stroke

A Mazurek 2022 (at review) CARMEN Collaborators Systematic Review and Meta-Analysis Novel Large-Diameter Controlled-Expansion Stentriever, Embolic-Prevention Stent and Flow Reversal in Large-Thrombus-Burden ICA Proximal Occlusion Stroke

Lukasz Tekieli, MD, PuD, ^{a.b.c} Krzysztof Banaszkiewicz, MD, PuD, ^{c.d} Zbigniew Moczulski, MD, ^{c.e} Małgorzata Urbańczyk-Zawadzka, MD, ^{c.e} Piotr Musialek, MD, DPutt^{b.c}

SAFE-GUARD STROKE

ClinicalTrials.gov Identifier: NCT05195658

JACC: CARDIOVASCULAR INTERVENTIONS VOL. 14, NO. 21, 2021

LEIPZIG INTERVENTIONAL COURSE

2022

CLINICALLY and ANATOMICALLY

EFECTIVE

ENDOVASCULAR RECONSTRUCTION

JACC Intv 2021

CGuard MicroNET Stent to treat acute ischaemic stroke

Krakowski Szpital Specjalistyczny Jana Pawla I STANISLAW 04-10 M 634708 2021-01-14 14:29:40.703000

- R-limbs heamiparesis
- TOTAL motoric aphasia
- Severe sensoric aphasia

IFU-heparinization (ACT 261s)

Haemodynamically critical, <u>floating-thrombus</u> lesion

Final result

CGuard

NB. COMPLETE Effective Lesion Exclusion confirmed on IVUS (normal lumen)

SAFE & uncomplicated, with optimal angiographic and clinical outcome

C-HEAL STUDY

NCT04434456

Immediate result

C-HEAL STUDY

ANEURYSM Total Exclusion @ 72h

SPONTANEOUS HEALING

Reconstruction of NORMAL

ANATOMY

6-mo Follow-up

Patient CURED

NCT04434456

Competent CAS,

with a tailored use of the access route (TF, TR, TC), tailored use of proximal/distal EPD, and 100% Embolic Prevention Stent use shows unpecedented safety and efficacy in Aymptomatic and Increased-stroke-risk Asx pts

Competent CAS,

with a tailored use of the access route (TF, TR, TC), tailored use of proximal/distal EPD, and 100% Embolic Prevention Stent use shows unpecedented safety and efficacy in Aymptomatic and Increased-stroke-risk Asx pts

New-generation endovascular management in primary and secondary prevention of carotid-related strokes is doing VERY well – and it is here to stay!

MicroNet-covered Carotid Stent

A NEW STANDARD OF CARE

Symptomatic carotid lesion – FULLY INSULATED with CGuard MicroNET-covered stent system (OCT)

Latest techniques for carotid revascularisation

MicroNET-covered Embolic Prevention Stent

Piotr Musialek

Jagiellonian University Dept. of Cardiac & Vascular Diseases John Paul II Hospital, Kraków, Poland

2022