

Can Mesh Covered Stents Replace Stent-Grafts For The Treatment Of Complex Iliac Occlusive Lesions: Advantages And Disadvantages

Piotr Myrcha

I Chair and Clinic of General and Vascular Surgery, Faculty of Medicine, Medical University of Warsaw,

Head of Department of General, Vascular and Oncological Surgery, Mazovian Brodnowski Hospital, Warsaw, Poland

Disclosure

Speaker: Piotr Myrcha, MD

I do not have any potential conflict of interest

Open surgical procedures:

- Excellent patency rates
- Substantial morbidity and mortality

Endovascular treatment:

- Good safety
- Good short-term efficacy
- Decreased morbidity, complications and costs

Endovascular treatment of significant iliac artery stenosis with claudication:

- PTA alone
- Stenting for suboptimal or failed result from PTA (e.g., persistent gradient, residual diameter stenosis >50%, or flow-limiting dissection).
- Primary stenting for CIA/EIA stenosis and occlusions

Major complications occurred more often in the PTA group (20%, 11/55), compared to the PS group (5%, 3/57) (OR 4.50, 95% CI 1.18 to 17.14)

Jongsma H, Bekken J, Ayez N, Hoogewerf CJ, Van Weel V, Fioole B. Angioplasty versus stenting for iliac artery lesions. Cochrane Database Syst Rev. 2020.1;12(12):CD007561

High-risk morphology stenosis with complex/thrombotic lesionsembolisation

I'v kutanm ki

VEITHSYMPOSIUM

Iliac artery occlusive disease

Endovascular treatment

Review

Endothelialization strategy of implant materials surface: The newest research in recent 5 years

Qihao Bian^{1,2}, Junying Chen^{1,3}, Yajun Weng^{1,3} and Suiyan Li² JABFM Journal of Applied Biomaterials & Functional Materials

Journal of Applied Biomaterials & Functional Materials I–19 © The Author(s) 2022 Article reuse guidelines: sagepub.com/journals-permissions DOI: 10.1177/22808000221105332 journals.sagepub.com/home/jbf

Endothelialization is a key factor for the long-term effect of cover stents implantation.

Endovascular treatment

> Int J Biol Macromol. 2021 May 15:179:567-575. doi: 10.1016/j.ijbiomac.2021.03.008. Epub 2021 Mar 3.

Evaluation of human umbilical vein endothelial cells growth onto heparin-modified electrospun vascular grafts

Pablo C Caracciolo ¹, Patricia Diaz-Rodriguez ², Inés Ardao ³, David More, Florencia Montini-Ballarin ⁴, Gustavo A Abraham ⁴, Angel Concheiro ², Carmen Alvarez-Lorenzo ²

The delay of endothelialization on the surface of the material is the main cause of restenosis and...

Endovascular treatment

> RSC Adv. 2021 Feb 3;11(11):5903-5913. doi: 10.1039/d1ra00053e. eCollection 2021 Feb 2.

Endothelialization of an ePTFE vessel prosthesis modified with an antithrombogenic fibrin/heparin coating enriched with bound growth factors

Johanka Táborská¹, Zuzana Riedelová¹, Eduard Brynda¹, Paver

<u>áš Ri</u>edel ¹

The delay of endothelialization on the surface of the material is the main cause of ... advanced thrombosis after implantation.

Endovascular treatment

 Review
 > Vascular. 2022 Oct;30(5):960-968. doi: 10.1177/17085381211036548.

 Epub 2021 Aug 4.

Late onset infection of covered and bare metal arterial stents

Ottavia Borghese¹², Angelo Pisani³, Dan Andrei Fu

Twenty two studies- 24 patients with graft infection

- Infection- a median of 22 months postoperatively
- 4 cases (16.7%)- haemorrhagic shock upon arterial rupture.
- 3 patients (12.5%) died from a septic shock or multi-organ failure.

Study Type :	Interventional (Clinical Trial)
Estimated Enrollment :	50 participants
Allocation:	Medical University of Warsaw, Poland (Dept. of General and Vascular Surgery)
Intervention Model:	Single Group Assignment
Intervention Model Description:	Prospective, single-center, open-label, single-arm, non-randomized clinical trial.
Masking:	None (Open Label)
Primary Purpose:	Treatment
Official Title:	Mesh Stents Study in Iliac Complex Lesions Iliac-Mesh Stent Study (IMS-Study)
Estimated Study Start Date :	June 10, 2022
Estimated Study Completion Date:	December 31, 2024
Principal Investigator:	Piotr Myrcha, MD Medical University of Warsaw, Poland

Caution: The CGuard Stent system is investigational only and not for sale in the USA.

Caution: The CGuard Stent system is not licensed for use in the iliac region.

Consent of the Bioethics Committee of the Medical University of Warsaw (Poland) No. KB/11/2021 to conduct a study on the use of CGuard mesh stents in iliac arteries.

Inclusion Criteria:

General Inclusion Criteria (principal):

- Patients older than 18 years, after Vascular Team evaluation, according to local standards, eligible for Iliac artery
- Written, informed consent to participate
- Agreement to attend Protocol required (standard) follow up visits and examinations

Angiographic Inclusion Criteria (principal):

- De novo iliac stenosis
- Stenosis eligible for endovascular treatment per Vascular Team evaluation (according to current standards and guidelines)
- High-risk morphology stenosis with complex/thrombotic lesions (1 independent, experienced operator).

Exclusion Criteria:

General Exclusion Criteria (principal):

- Life expectancy <1 year (e.g., active neoplastic disease).
- Chronic kidney disease with creatinine > 3.0 mg/dL.
- Coagulopathy.
- Contraindication for decoagulation
- History of uncontrolled contrast media intolerance
- Myocardial infarction in 72 hours preceding the stenting procedure (if possible, postponing the procedure)
- Stroke in 6 weeks preceding the stenting procedure (if possible, postponing the procedure)
- Pregnancy (positive pregnancy test)

Exclusion Criteria:

AngiographicExclusion Criteria (principal):

- Chronic total occlusion not amenable to re-canalization
- Stent in the target vessel/lesion
- Anatomic variants precluding stent implantation
- Mobile (free-floating) plaque elements in aorta or arteries proximal to the target lesion

Outcome Measures

Primary Outcome Measures : MACNE (Major Adverse Cardiac or Neurological Event) [Time Frame: 48 hours after procedure]

In-hospital MACNE (death, stroke, myocardial infarction, acute limb or target organ ischemia)

> J Endovasc Ther. 2019 Aug;26(4):578-582. doi: 10.1177/1526602819849078. Epub 2019 May 6.

Initial Clinical Results and In Vitro Testing of the New CGuard MicroNet-Covered "One-Size-Fits-All" Carotid Stent

Christian Wissgott ¹, Christoph Brandt-Wunderlich ², Christoph Kopetsch ¹, Wolfram Schmidt ², Reimer Andresen ¹

Diameter, mm	Chronic Outward Force Normalized to Stent Length, N/mm	Maximum Force, %	Minimum Force, %
5	0.386	7	198
5.5	0.330	100	169
6	0.318	96	163
6.5	0.307	93	157
7	0.297	90	152
7.5	0.282	85	145
8	0.259	78	133
8.5	0.237	72	122
9	0.195	59	100
9.5	0.138	42	
10	0.037	11	

Table 2. Chronic Outward Force During Expansion of the One-Size-Fits-All CGuard Stent.

Mesh Stents Study in ILIAC Complex Lesions

"One-Size-Fits-All" Carotid Stent

	Diameter						
Length	6mm	7mm	8mm	9mm	10mm		
20mm	CRX0620	CRX0720	CRX0820	CRX0920	CRX1020		
30mm	CRX0630	CRX0730	CRX0830	CRX0930	CRX1030		
40mm	CRX0640	CRX0740	CRX0840	CRX0940	CRX1040		
*60mm	CRX0660		CRX0860		CRX1060		
*60mm sizes are not available in Australia							

Diameter

Wissgott C, Brandt-Wunderlich C, Kopetsch C, Schmidt W, Andresen R. Initial Clinical Results and In Vitro Testing of the New CGuard MicroNet-Covered "One-Size-Fits-All" Carotid Stent. J Endovasc Ther. 2019;26(4):578-582 IMS-Study became part of the international FLOWGUARD-ILIAC, NCT04461717 (2024)

Challenges when using the CGuard mesh stent:

- 0.014" guidewire
- "One-Size-Fits-All" diameter (10 mm)
- Maximum length of 60 mm
- Cross-over technique

FLOWGUARD-ILIAC, NCT04461717

FLOWGUARD-ILIAC, NCT04461717

Tuesday, November 19 - Saturday, November 23, 2024

FLOWGUARD-ILIAC, NCT04461717

CGuard: Flow-diveter effect

FLOWGUARD-ILIAC, NCT04461717

CGuard: Flow-diveter effect

CGuard: Flow-diveter effect

Preliminary conclusions

- 1. CGuard implantation into the iliac artery is feasible and safe.
- 2. The use of a mesh stent may be a cheaper alternative to a peripheral stent graft.
- 3. The use of the 0.014 " guidewire requires some technical

modifications to the implantation.

4. "One-Size-Fits-All" facilitates implantation in the common iliac artery

VEITHSYMPOSIUM®

Connecting The Vascular Community

Thank you for your attention

piotr.myrcha@wum.edu.pl