

Update On Results With The CGuard[™] MicroNet Covered Stent (InspireMD) For CAS: Does It Prevent Strokes: Does It Cause ISR Or Other Long-Term Problems: Can It Have Value In Other Vascular Beds?

Piotr Musialek, MD DPhil

Jagiellonian University Dept. of Cardiac & Vascular Diseases John Paul II Hospital, Krakow, Poland

Disclosure Statement of Financial Interest

Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below.

Affiliation/Financial Relationship

- Grant/Research Support
- Consulting Fees/Honoraria

Company

- ABBOTT
- ABBOTT, Balton, InspireMD, Medtronic

OPINIONS matter

(ASSUMPTIONS – less so)

HYPOTHESES may be interesting

but what is critical to the decision-making Physician...

are FACTS

ZERO evidence that OMT is sufficient to prevent strokes

ZERO evidence that OMT is sufficient to prevent strokes

We CONTINUE to receive patients with SYMPTOMS (incl. Strokes) DESIPTE OMT

Assumptions are not powered

to dismiss

Large-scale level 1 evidence

(ACST, >3100 pts)

"Systematic Review and Analysis"...

where is ACST ? (n=3120)

Abbott Medical Intervention Alone for Asymptomatic Carotids e575

Table 1. Average Annual Stroke +/-TIA Rates of Patients With Asymptomatic Severe (>50%) Carotid Stenosis Managed With Medical Intervention Alone (%)*

Study	Sample Size	Ipsilateral Stroke		Ipsilateral Stroke/TIA		Any Territory Stroke		Any Territory Stroke/TIA	
		Raw Data	KM Estimates	Raw Data	KM Estimates	Raw Data	KM Estimates	Raw Data	KM Estimates
Johnson, 1985 ⁷⁶	121	3.3		19.0					
Toronto, 1986 ²	113	0		7.9 (all TIA)		1.9		10.7	11.0
VACS, 1993 ¹⁰	233	2.4		5.2		3.0		6.1	
ACAS, 199511	834	2.3	2.2	4.5	3.8	3.8	3.5		
ECST, 199577	127	2.3	1.9						
ACBS, 199778	357	1.2	1.4	3.4	4.2	2.1	2.5	5.8	
CHS, 1998 ⁸²	185	1.3	1.0			2.6	2.3		
NASCET, 2000 ³	216		3.2						
ACSRS, 200579	1115	1.3	1.7	3.1	3.4		2.1		4.1
ASED, 2005 ⁸⁰	202	1.2	1.0	3.2	3.1	2.4	2.2	5.6	5.1
SMART, 2007 ⁸¹	221	0.6				0.7			

*ACAS indicates Asymptomatic Carotid Atherosclerosis Study; ECST, European Carotid Surgery Trial; ACBS, Asymptomatic Cervical Bruit Study; NASCET, North American Symptomatic Carotid Endarterectomy Trial; ACSRS, Asymptomatic Carotid Stenosis and Risk of Stroke Study; ASED, Asymptomatic Stenosis Embolus Detection Study; SMART, Second Manifestations of ARTerial disease Study.

Stroke reduction with carotid stenosis revascularization

A. Halliday et al. (10-year ACST data) Lancet 2010

Stroke reduction with carotid stenosis revascularization in patients on lipid-lowering Tx

A. Halliday et al. (10-year ACST data) Lancet 2010

Assumptions are not powered to dismiss Large-scale level 1 evidence (ACST, >3100 pts)

If someone wants to dismiss it, they need to show new (different) level 1 evidence!

FACT #3 Conventional Carotid Stents Do Have A Problem

Image courtesy Joan Rigla, MD PhD; Perceptual Imaging Lab, Univerity of Barcelona

• CEA <u>excludes</u> the plaque

CEA excludes the plaque In CAS, the stent should exclude the plaque too

CEA excludes the plaque

•In CAS, the <u>stent should</u> <u>exclude the plaque too</u>

The CGuard[™] MicroNet-Covered Embolic Prevention Stent System

is effective in reducing peri- and post-procedural cerebral embolism

(Routine DW-MRI data in CARENET; results reproduced by 2+ other studies)

JACC: CARDIOVASCULAR INTERVENTIONS © 2015 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION PUBLISHED BY ELSEVIER INC.

A Prospective, Multicenter Study of a Novel Mesh-Covered Carotid Stent

The CGuard CARENET Trial

(Carotid Embolic Protection Using MicroNet)

Joachim Schofer, MD,* Piotr Musiałek, MD, DPHIL,† Klaudija Bijuklic, MD,* Ralf Kolvenbach, MD,‡ Mariusz Trystula, MD,† Zbigniew Siudak, MD,†§ Horst Sievert, MD||

ABSTRACT OF THE ABSTRACT AT B/L, 24-48h after CAS, and at 30 days

OBJECTIVES This study sought to evaluate the feasibility of the CGuard Carotid Embolic Protective Stent system—a novel thin strut nitinol stent combined with a polyethylene terephthalate mesh covering designed to prevent embolic events from the target lesion in the treatment of carotid artery lesions in consecutive patients suitable for carotid artery stenting.

BACKGROUND The risk of cerebral embolization persists throughout the carotid artery stenting procedure and remains during the stent healing period.

METHODS A total of 30 consecutive patients (age 71.6 \pm 7.6 years, 63% male) meeting the conventional carotid artery stenting inclusion criteria were enrolled in 4 centers in Germany and Poland.

Filter-protected CAS procedures CARENET vs PROFI: DW-MRI analysis

Filter-protected CAS procedures CARENET vs PROFI: DW-MRI analysis

* see patient fluxogram Bijuklic et al. JACC, 2012;59

J. Schofer, P. Musialek et al. *JACC Intv* 2015;8:1229-34 Bijuklic et al. (manuscript in preparation)

CARENET DW-MRI analysis^{*}

All but one peri-procedural ipsilateral lesions

RESOLVED

DW-MRI analysis @ 30 days*						
Incidence of new ipsilateral lesions	1					
Average lesion volume (cm ³)	0.08 ± 0.00					
Permanent lesions at 30 days	1					

*External Core Lab analysis (US)

J. Schofer, P. Musialek et al. JACC Intv 2015;8:1229-34

Tomyuki Umemoto et al. *EuroIntervention* 2017

F

© T O Vascular Endovascular Issues Techniques Horizons O

Musialek & Stabile *EuroIntervention* 2017

Tomyuki Umemoto et al. EuroIntervention 2017

F

Musialek & Stabile *EuroIntervention* 2017

Also, CGuard[™] enables

routine Endovascular Reconstruction of the Carotid Bifurcation

(systematic CEA-like effect of CGuard[™] CAS)

systematic

CEA-like effect of CAS

EuroIntervention 2016;12:e658-70

TCT 2016 Featured Research

Endovascular Solution for All-Comers

Endovascular Reconstruction of the Carotid Bifurcation Prevention of embolism, High radial force, Conformability

FACT #7

Procedural risk level

(vs. the disease natural history risk)

is critical for physician decision-making

"Asymptomatic" Carotid Stenosis Decision-making

PHARMACOTHERAPY + INERVENTION

ISOLATED PHARMACOTHERAPY

"Asymptomatic" Carotid Stenosis Decision-making

ISOLATED PHARMACOTHERAPY

Fundamental Issue

"People" with Carotid Stenosis

≠

Vascular Clinic Referral Patient

General Popu--lation Subject

annual ipsilateral stroke risk 2.5-3.0%

annual ipsilateral stroke risk ≈0.5%

Musialek & Hopf-Jensen J Endovasc Ther 2017;24:138-148

CHADS₂ Calculator for Atrial Fibrillation

Evaluates ischemic stroke risk in patients with atrial fibrillation

Criteria		Poss. Point
Congestive heart failure Signs/symptoms of heart failure confirmed with objective evidence of cardiac dysfunction	Yes No	+1
Hypertension Resting BP > 140/90 mmHg on at least 2 occasions <u>or</u> current antihypertensive pharmacologic treatment	Yes No	+1
Age 75 years or older	Yes No	+2
Diabetes mellitus Fasting glucose > 125 mg/dL or treatment with oral hypoglycemic agent and/or insulin	Yes No	+1
Stroke, TIA, or TE	Yes No	+2
ncludes any history of cerebral ischemia		
Vascular disease Prior MI, peripheral arterial disease, or aortic plaque	Yes No	+1
Age 65 to 74 years	Yes No	+1
Sex Category (female) Female gender confers higher risk	Yes No	+1

PARADIGM Methods (cont'd):

- <u>ASYMPTOMATIC</u> patients treated interventionally only if at stroke risk
- established lesion-level increased-risk crieria used:
 - thrombus-containing
 - documented progressive
 - irregular and/or ulcerated
 - contralateral ICA occlusion/stroke
 - asymptomatic ipsilateral brain infarct

AbuRahma A et al. *Ann Surg.* 2003;238:551-562. Ballotta E et al. *J Vasc Surg* 2007;45:516-522. Kakkos SK et al. (ACSRS) *J Vasc Surg.* 2009;49:902-909. Lovett JK et al. *Circulation* 2004;110:2190-97 Nicolaides AN et al. *J Vasc Surg* 2010;52:1486-96. Taussky P et al. *Neurosurg Focus* 2011;31:6-17.

FACT #8

CGuard[™] - CAS can achieve peri-procedural and 30-day complication rate

at the level of ≈1%

not only in "selected" patients bus also in All-comers

clinical **Evidence**

10⁺ studies

<u>P</u>rospective evaluation of <u>A</u>ll-comer pe<u>R</u>cutaneous c<u>A</u>roti<u>D</u> revascularization in symptomatic and <u>I</u>ncreased-risk asymptomatic carotid artery stenosis using the C<u>G</u>uard[™] <u>M</u>icronet-covered embolic prevention stent system

The PARADIGM Study

EUro PCR 2016 LATE BREAKING TRIALS

Objective

 to evaluate feasibility and outcome of <u>routine</u> anti-embolic stent system use in <u>unselected</u>, <u>consecutive</u> patients referred for carotid revascularization (<u>'all-comer</u>' study)

P. Musialek, A. Mazurek et al. EuroIntervention 2016;12:e658-70 TCT 2016 Featured Research (PARADIGM design and 30-day outcome data)

Novel PARADIGM in carotid revascularisation: Prospective evaluation of All-comer peRcutaneous cArotiD revascularisation in symptomatic and Increased-risk asymptomatic carotid artery stenosis using CGuard[™] Micronet-covered embolic prevention stent system

Piotr Musialek^{1*}, MD, DPhil; Adam Mazurek¹, MD; Mariusz Trystula², MD, PhD;
Anna Borratynska³, MD, PhD; Agata Lesniak-Sobelga¹, MD, PhD; Malgorzata Urbanczyk⁴, MD;
R. Pawel Banys⁴, MSc; Andrzej Brzychczy², MD, PhD; Wojciech Zajdel⁵, MD, PhD;
Lukasz Partyka⁶, MD, PhD; Krzysztof Zmudka⁵, MD, PhD; Piotr Podolec¹, MD, PhD

1. Jagiellonian University Department of Cardiac & Vascular Diseases, John Paul II Hospital, Krakow, Poland; 2. Department of Vascular Surgery, John Paul II Hospital, Krakow, Poland; 3. Neurology Outpatient Department, John Paul II Hospital, Krakow, Poland; 4. Department of Radiology, John Paul II Hospital, Krakow, Poland; 5. Jagiellonian University Department of Interventional Cardiology, John Paul II Hospital, Krakow, Poland; 6. KCRI, Krakow, Poland

PARADIGM

Clinical Results (MACNE) O peri-procedural death/major stroke/MI 0% 1 peri-procedural minor stroke* 0.9% O new clinical events by 30 days 0% (100% follow-up, independent neuro evaluation)

*One patient, with symptomatic RICA stenosis (minor right-hemispheric stroke 2 months prior to CAS), had **hypotonia** and transient, fluctuating cognitive dysfunction at 24-48h after CAS. The patient had additional neurologic evaluation on discharge (day 7) that showed **no change in NIH-SS [=3] and no change in modified Rankin scale [=1] against 48h (and baseline) evaluation**. CT scan on day 2 showed no new cerebral lesions but day 6 CT indicated **an extension of the prior lesion in the right hemisphere**.

The event, in **absence of right haemispheric symptoms and in absence of any clinical sequelae**, was CEC-adjudicated as minor stroke in relation to CAS'.

Evidence is accumulating that CGuard™ accompanied by OMT (that is ALWAYS the fundament)

shows effective stroke prevention throughout 3 years

in absence of device-related issues

36-month data

PARADIGM @ 36 months Favourable Clinical Outcome

NO device-related adverse events NO procedure-related events

s u s t a i n e d stroke prevention

The Outcome Difference

Between the MicroNet-Covered Stent

Vs. Conventional Carotid Stent(s) is driven by HIGH-RISK Plaques and Patients

Flow reversal time 7min 10sec Intolerance in the last 80sec (active aspiration still !! performed)

Patient A/S, discharged home, unremarkable follow-up

Normal stent image

FACT #10

There is more than that...

Moving beyond routine CAS...

CGuard™ MicroNet Covered Stent:

ADDRESSING UNMET NEEDS IN OTHER VASCULAR BEDS

Thrombus-containing/high-embolic risk lesions in <u>iliacs</u> or subclavians

Thrombus-containing/high-embolic risk lesions in <u>iliacs</u> or subclavians

OPTIMAL procedural result

Normal 6mo follow-up

Thrombus-containing/high-embolic risk lesions in iliacs or <u>subclavians</u>

Thrombus-containing/high-embolic risk lesions in iliacs or <u>subclavians</u>

LSA

Procedural result

Normal 6mo follow-up

Thrombus-containing/high-embolic risk lesions in <u>iliacs</u> or subclavians

Procedural result

Thrombus-containing/high-embolic risk lesions in <u>iliacs</u> or subclavians

CGuard™

Normal Result @follow-up

Thrombus-containing/high-embolic risk lesions in <u>iliacs</u> or subclavians and

Procedural acute outcome

Thrombus-containing/high-embolic risk lesions in iliacs or subclavians

result

OPTIMAL 6mo Pt ready for fem-fem (NB. several prior attempts to recanalize LCIA had failed)

Large-diameter SVG disease problem

AK, 58y, NSTE Acute Myocardial Infarction

SVG RD 7.5 mm (!)

Large-diameter SVG disease problem

AK, 58y, NSTE Acute Myocardial Infarction

SVG RD 7.5 mm (!)

Large-diameter SVG disease / NSTE-acute MI

post PCI/direct stenting with overlapping MicroNet–covered CGuard[™] stents

NB. absence of distal embolizm, normal OM flow, no further troponin rise

OPTIMAL acute result

Large-diameter SVG disease treated with CGuards (angio @3mo)

Large-diameter SVG disease treated with CGuards (CT-angio @6mo)

NOTE ostial placement precision feasibility

OPTIMAL result @ 6mo

(V) Higly calcific disease (note: adequate radial force need)

(V) Higly calcific disease (note adequate radial force need)

(V) Higly calcific disease (note: adequate radial force provided)

OPTIMAL result @ 6mo

CGuard™

Neo-Atherosclerosis In A Conventional LSA Stent: Treated With CGuard[™] under IVUS

Conventional Carotid Stent Design Allows Atherosclerotic Plaque In-Growth (ie., Neo-Atherosclerosis)

Atherosclerotic Plaque Growth Into The Open-Cell Stent Lumen Treated with Neroprotected PTA Under IVUS – and CGuard[™]

PTA

No flow (movie)

Aspiration

'Half-open' Filter Removal

Atherosclerotic Plaque Growth Into The Open-Cell Stent Lumen Treated with Neroprotected PTA Under IVUS – and CGuard™

CGuard[™] 8.0 x 40mm

CGuardTM For Symptomatic In-stent Neotherosclerosis:

2-year follow-up

Aneurysm/Dissection with recurrent symptoms

Immediate Post-Procedural Result

CGuard™

Totally SEALED @ 24h

Normal Follow-up @ 6 months

Immediate SEALING

Normal Result @ 6 mo

CGuard™

(Patient Asympt.)

MoMa, IVUS

Non-Healing Dissection with recurrent symptoms

Normal 12 mo Follow-up Result

P Musialek @ VEITH 2018

Н

Ostial CCA lesions

(note adequate radial force and placement percision need)

Lady 68 yo, retinal TIAs followed by <u>retinal stroke</u> while on OMT (mother to cathlab nurse)

Ostial CCA lesions (note adequate radial force and placement percision)

(movie)

Ostial CCA lesions

(note adequate radial force and placement percision)

OPTIMAL angiographic + clinical + duplex result @ 12mo

(and LECA patent) /

Ao

Acknowledgements

∞ T O Vascular Endovascular Issues Techniques Horizons R

R. Paweł Banyś Anna Borratyńska Mateusz Brózda Andrzej Brzychczy Władysław Dąbrowski Natalia Dłużniewska Tomasz Drążkiewicz **Urszula Gancarczyk** Paulina Judziało Marek Kazibudzki Klaudia Knap Artur Kozanecki Agata Leśniak-Sobelga Adam Mazurek Marcin Misztal **Zbigniew Moczulski Piotr Paluszek** Łukasz Partyka **Piotr Pieniążek Piotr Podolec** Grażyna Stankiewicz Tomasz Tomaszewski Mariusz Trystuła Małgorzata Urbańczyk Piotr Wilkołek Agnieszka Zwolińska

This concept has been desired. And it works.

This is the future of Carotid Artery Stenting

This concept has been desired. And it works.

This is the future of Carotid Artery Stenting

This concept has been desired. And it works.

This is the future of Carotid Artery evascularization revascularization

man 3D OCT, symptomatic lesion

CGuard™ EPS

CGuard[™] embolic prevention system

One swallow does not a summer make but many swallows do: accumulating clinical evidence for nearly-eliminated peri-procedural and 30-day complications with meshcovered stents transforms the carotid revascularisation field

Piotr Musiałek¹, L. Nelson Hopkins², Adnan H. Siddiqui²

¹Department of Cardiac and Vascular Diseases, Jagiellonian University, School of Medicine, John Paul II Hospital, Krakow, Poland ²Departments of Neurosurgery and Radiology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Jacobs Institute, Gates Vascular Institute Kaleida Health, Buffalo, New York, USA

> Adv Interv Cardiol 2017; 13, 2 (48): 95–106 DOI: https://doi.org/10.5114/pwki.2017.69012

Abstract

Atherosclerotic carotid artery stenosis (CS) continues to be a common cause of acute ischaemic stroke. Optimised medical therapy (OMT), the first-line treatment modality in CS, may reduce or delay – but it does not abolish – CS-related strokes. As per current AHA/ASA and ESC/ESVS/ESO guidelines, carotid artery stenting (CAS) is a less-invasive alternative to carotid endarterectomy (CEA) for CS revascularisation in primary and secondary stroke prevention.

Ten-year follow-up from the CREST trial in patients with symptomatic and asymptomatic CS confirmed equipoise of CAS and CEA in the primary endpoint. Nevertheless CAS – using a widely open-cell, first-generation stent and first-generation (distal/filter) neuroprotection – has been criticised for its relative excess of (mostly minor) strokes by 30 days, a significant proportion of which were post-procedural.

Atherosclerotic plaque protrusion through conventional carotid stent struts, confirmed on intravascular imaging, has been implicated as a leading mechanism of the relative excess of strokes with CAS vs. CEA, including delayed strokes with CAS. Different designs of mesh-covered carotid stents have been developed to prevent plaque prolapse. Several multi-centre/multi-specialty clinical studies with CGurad MicroNet-Covered Embolic Prevention Stent System (EPS) and RoadSaver/Casper were recently published and included routine DW-MRI cerebral imaging peri-procedurally and at 30 days (CGuard EPS).

Data from more than 550 patients in mesh-covered carotid stent clinical studies to-date show an overall 30-day complication rate of -1% with near-elimination of post-procedural events. While more (and long-term) evidence is still anticipated, these results – taken together with optimised intra-procedural neuroprotection in CAS (increased use of proximal systems including trans-carotid dynamic flow reversal) and the positive 12-month mesh-covered stent data reports in 2017 – are transforming the carotid revascularisation field today.

Establishing effective algorithms to identify the asymptomatic subjects at stroke risk despite OMT, and large-scale studies with mesh-covered stents including long-term clinical and duplex ultrasound outcomes, are the next major goals.

Key words: carotid artery stenting, mesh, stroke, endarterectomy, neuroprotection.

THE VASCULAR WORLD TOGETHER IN NEW YORK

Update On Results With The CGuard[™] MicroNet Covered Stent (InspireMD) For CAS: Does It Prevent Strokes: Does It Cause ISR Or Other Long-Term Problems: Can It Have Value In Other Vascular Beds?

Piotr Musialek, MD DPhil

Jagiellonian University Dept. of Cardiac & Vascular Diseases John Paul II Hospital, Krakow, Poland

