ESC 2019 Rapid Fire Session

New data in carotid disease:

From understanding the pathology to management

PARADIGM-Extend Prospective Academic Trial: Accumulating long-term evidence for MicroNet-covered stent safety and stroke prevention efficacy

P. Musialek, A. Mazurek, M. Trystuła, A. Borratynska, T. Tomaszewski, A. Lesniak-Sobelga, M. Brozda, U. Gancarczyk, E. Sobieraj, N. Dluzniewska, M. Urbanczyk, P. Banys, J. Miszczuk, P. Judzialo, G. Stankiewicz, T. Drazkiewicz, P. Podolec

ESC Congress

Jagiellonian University Dept. of Cardiac & Vascular Diseases John Paul II Hospital, Kraków, Poland & Collaborating Vascular Centres

Supported K/ZDS/007819 (Jagiellonian University Medical College)

Disclosures

Proctoring/Speaker Bureau/Advisory Boards - Abbott, InspireMD, Medtronic

Research Support - Abbott (IIS)

Research work in this presentation is supported by the Jagiellonian University Medical College (K/ZDS/007819)

PARADIGM-Extend = <u>P</u>rospective evaluation of <u>A</u>ll-comer pe<u>R</u>cutaneous c<u>A</u>roti<u>D</u> revascularization in symptomatic and <u>I</u>ncreased-stroke-risk asymptomatic carotid artery stenosis using C<u>G</u>uard[™] <u>M</u>icronet-covered embolic prevention stent system – <u>clinical trial multi-centre extension</u>

PARADIGM-Extend = Prospective evaluation of <u>A</u>ll-comer pe<u>R</u>cutaneous c<u>A</u>roti<u>D</u> revascularization in symptomatic and Increased-stroke-risk asymptomatic carotid artery stenosis using C<u>G</u>uard[™] <u>M</u>icronet-covered embolic prevention stent system – <u>clinical trial multi-centre extension</u>

EuroIntervention 2016;12-online publish-ahead-of-print May 2016 CLINICAL RESEARCH

EURO PCR 2016 LATE BREAKING TRIALS

Novel PARADIGM in carotid revascularisation: Prospective evaluation of All-comer peRcutaneous cArotiD revascularisation in symptomatic and Increased-risk asymptomatic carotid artery stenosis using CGuard[™] Micronet-covered embolic prevention stent system

Piotr Musialek^{1*}, MD, DPhil; Adam Mazurek¹, MD; Mariusz Trystula², MD, PhD;
Anna Borratynska³, MD, PhD; Agata Lesniak-Sobelga¹, MD, PhD; Malgorzata Urbanczyk⁴, MD;
R. Pawel Banys⁴, MSc; Andrzej Brzychczy², MD, PhD; Wojciech Zajdel⁵, MD, PhD;
Lukasz Partyka⁶, MD, PhD; Krzysztof Zmudka⁵, MD, PhD; Piotr Podolec¹, MD, PhD

Conventional Carotid Stents

Conventional Carotid Stents Do Have A Problem

Conventional Carotid Stents Do Have A Problem

This translates into post-procedural minor strokes during the stent healing (\approx 30days)

(CREST, CAPTURE) ≈40% 30d-strokes are post-procedural

Human carotid artery treated using a conventional stent; OCT

FUNDAMENTAL

•CEA, by excluding the plaque, excludes the post-procedural problem of the plaque

FUNDAMENTAL

•CEA, by excluding the plaque, excludes the post-procedural problem of the plaque

 In CAS, the <u>stent needs to</u> <u>exclude the plaque too</u>

FUNDAMENTAL

•CEA, by excluding the plaque, excludes the post-procedural problem of the plaque

 In CAS, the <u>stent needs to</u> <u>exclude the plaque too</u>

CGuard[™]– Carotid Embolic Prevention System

Syste	m specifications
Stent type	Nitinol – self expanding
Micronet aperture size	150-180 μm
Guidewire	0.014″
- Diameter - Length	6-10mm 20-60mm
	carotid-dedicated design
the second s	Accession of the second s
Mark – March 2014	

ESC Congress Paris 2019

CGuard EPS 90 days/pig

CA-S 3 13-1689-3 10x H&E.tif

12-105 LCCA-S 3 13-1689-3 1.25x H8

InspireMD data / by permission

CGuard EPS

30 & 90 days / pig

CA-S 3 13-1689-3 10x H&E.tif	13-1689-3 10x H&E.tif
------------------------------	-----------------------

Mean ± SD and Median Standard Histomorphology Parameters								
Parameter	Day 30				Day 90			
	BMS (n=	3)	CGuard (n	=9)	BMS (n=3	3)	CGuard (n=	:9)
Injury (0-3)	0.00 ± 0.01	0.00	0.00 ± 0.01	0.00	0.01 ± 0.02	0.00	0.00 ± 0.01	0.00
Inflammation (0-3)	0.43 ± 0.23	0.51	0.41 ± 0.22	0.36	0.17 ± 0.16	0.11	0.09 ± 0.08	0.07
Neointimal Fibrin (0-3)	1.13 ± 0.23	1.00	0.82 ± 0.37	1.00	0.00 ± 0.00	0.00	0.00 ± 0.00	0.00
Adventitial Fibrosis (0-3)	0.00 ± 0.00	0.00	0.02 ± 0.07	0.00	0.00 ± 0.00	0.00	0.00 ± 0.00	0.00
Neointimal Maturation (0-3)	3.00 ± 0.00	3.00	3.00 ± 0.00	3.00	3.00 ± 0.00	3.00	3.00 ± 0.00	3.00
Endothelialization (0-4)	3.67 ± 0.42	3.80	3.62 ± 0.35	3.80	4.00 ± 0.00	4.00	4.00 ± 0.00	4.00

Tomyuki Umemoto et al. *EuroIntervention* 2017

Musialek & Stabile *EuroIntervention* 2017

ESC Congress Paris 2019

rox 1000 um

Tomyuki Umemoto et al. *EuroIntervention* 2017

ESC Congress Paris 2019

Musialek & Stabile *EuroIntervention* 2017

Objective

 to evaluate feasibility and outcome of <u>routine</u> anti-embolic stent system use in <u>unselected</u>, <u>consecutive</u> patients referred for carotid revascularization (<u>'all-comer</u>' study)

<u>P</u>rospective evaluation of <u>A</u>ll-comer pe<u>R</u>cutaneous c<u>A</u>roti<u>D</u> revascularization in symptomatic and <u>I</u>ncreased-risk asymptomatic carotid artery stenosis using the C<u>G</u>uard[™] <u>M</u>icronet-covered embolic prevention stent system

The PARADIGM Study

TCT 2016 Featured Research

PARADIGM

Methods (cont'd):

<u>ASYMPTOMATIC</u> patients treated interventionally only if at /stroke risk

- established lesion-level increased-risk crieria used:
 - thrombus-containing
 - documented progressive
 - irregular and/or ulcerated
 - contralateral ICA occlusion/stroke
 - asymptomatic ipsilateral brain infarct

AbuRahma A et al. *Ann Surg.* 2003;238:551-562. Ballotta E et al. *J Vasc Surg* 2007;45:516-522. Kakkos SK et al. (ACSRS) *J Vasc Surg.* 2009;49:902-909. Lovett JK et al. *Circulation* 2004;110:2190-97 Nicolaides AN et al. *J Vasc Surg* 2010;52:1486-96. Taussky P et al. *Neurosurg Focus* 2011;31:6-17.

ESC Congress Paris 2019

TCT 2016 Featured Research

CGuard[™] EPS Carotid **PARADIGM** Study **12mo Duplex Ultrasound Data** 12month data 8 Symptomatic – 54.5% n=106 arteries in 101 patients ECA* patency (s/m) 6 5 PSV 4 3 2

0 baseline 12 months 30 days 97.0% 97.0% 96.9% 100/106 ECAs **ECA** 3 ECAs occluded at CAS were patent prior to CAS 97/100 93/96 ECAs patent ECAs patent ESC Congress tct2016 TCT 2016 Featured Research * per stented ICAs/ patent (patient alive)

Paris 2019

No exclusion criteria

other than absence of carotid stenosis that requires revascularization by NVT recomendation

CAROTID PARADIGM REVASCULARIZATION

31 July 2019

 402 patients / 436 arteries NeuroVascular Team decision-making on endovascular revascularization

CAROTID PARADIGM REVASCULARIZATION

31 July 2019

- 402 patients / 436 arteries NeuroVascular Team decision-making on endovascular revascularization
- Age 48-87 years, <u>56.4% symptomatic</u>
- Crossed the trial first follow-up window (30d)

CAROTID PARADIGM REVASCULARIZATION

31 July 2019

- 402 patients / 436 arteries NeuroVascular Team decision-making on endovascular revascularization
- Age 48-87 years, <u>56.4% symptomatic</u>
- Crossed the trial first follow-up window (30d)
- 100% CGuardEPS use, Proximal/distal EPD ≈ 50% : 50%

continues as an ALL-Comer Multi-Centre Study

31 July 2019

- 402 patients / 436 arteries NeuroVascular Team decision-making on endovascular revascularization
- Age 48-87 years, <u>56.4% symptomatic</u>
- Crossed the trial first follow-up window (30d)
- 100% CGuardEPS use, Proximal/distal EPD ≈ 50% : 50%
- Angiographic diameter stenosis was reduced from 84±8% to only 6.9±5% (p<0.001, 'CEA-like' effect of CAS)

402 patients / 436 arteries

31 July 2019

• <u>Peri-procedural outcome</u>

0 death/major stroke – 0% 1 minor stroke – 0.25% 1 MI (type2) – 0.25%

402 patients / 436 arteries

31 July 2019

<u>Peri-procedural outcome</u>

0 death/major stroke – 0% 1 minor stroke – 0.25% 1 MI (type2) – 0.25%

• <u>By 30 days</u>

1 haemorrhagic transformation of prior ischaemic cerebral infarct leading to **death – 0.25%**

1 bleeding-related death - 0.25%

402 patients / 436 arteries

31 July 2019

• Total

30-day death/MI/any stroke – 0.995 % (4/402)

• no major stroke by 30 days - 0.0 % (0/402)

402 patients / 436 arteries

PARADIGN

31 July 2019

• Total

30-day death/MI/any stroke – 0.995 % (4/402)

• no major stroke by 30 days - 0.0 % (0/402)

Then clinical (inc. Neurology exam) and Duplex follow-up every 12 months

Population **Unselected** AFib 8.9%) Comer, (eg. NB. AL ESC Congress

Paris 2019

lation	PARADIGM	PARADIGM – Extend					
Popula	REVASCULARIZATION	1-<u>12 mo</u> n=311	13-<u>24 mo</u> n=205	25-<u>36 mo</u> n=108	37-<u>48 mo</u> n=61		
ted	 ipsilateral stroke 	0	0	1	1		
Unselect AFib 8.9%)	 any stroke 	0	2 1 cerebellal 1 contralat.	1 brain stem	2 (1 contralat.)		

NB. ALL-Comer, B. A ESC Congress Paris 2019

tion	PARADIGM	PARADIGM – Extend					
Populatio	REVASCULARIZATION	1- <u>12 mo</u>	13- <u>24 mo</u>	25- <u>36 mo</u>	37- <u>48 mo</u>		
ď		n=311	n=205	n=108	n=61		
ected	 ipsilateral stroke 	0	0	1	1		
Jnsele (Fib 8.9%)	any stroke	0	2 1 cerebellal 1 contralat.	1 brain stem	2 (1 contralat.)		
ner, U (eg. AFi	 stroke-related death 	0	1	0	1		

Unselected NB. ALL-Comer, ESC Congress Paris 2019

Population	CAROTID PARADIGM	PARADIGM – Extend					
pula	REVASCOLARIZATION	1- <u>12 mo</u>	13- <u>24 mo</u>	25- <u>36 mo</u>	37- <u>48 mo</u>		
	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	n=311	n=205	n=108	n=61		
ected	 ipsilateral stroke 	0	0	1	1		
, Unselected AFib 8.9%)	any stroke	0	2 1 cerebellal 1 contralat.	1 brain stem	2 (1 contralat.)		
Comer, l (eg. A	 stroke-related death 	0	1	0	1		
ALL-Co	MI or other non-cerebral VA	3	3	2	2		

ESC Congress Paris 2019

NB.

tion	PARADIGM	PARADIGM – Extend					
Population	REVASCULARIZATION	1- <u>12 mo</u>	13- <u>24 mo</u>	25- <u>36 mo</u>	37- <u>48 mo</u>		
ď		n=311	n=205	n=108	n=61		
cted	 ipsilateral stroke 	0	0	1	1		
Jnsele Fib 8.9%	• any stroke	0	2 1 cerebellal 1 contralat.	1 brain stem	2 (1 contralat.)		
ner, l (eg. A	 stroke-related death 	0	1	0	1		
	MI or other non-cerebral VA	3	3	2	2		
NB. AL		13 CHF-4, Ca-3, PE-1, MI-2 DPD-1,uroseps -1, surg-1	10 CHF-3, Ca-2, MI-2 surg-2, intrac. bleed-2	6 CHF-2, Ca-2, MI-1 L urosepsis -1	4 CHF-2, Ca-2, MI-2		
tion	Ρ/	PARADIGN	PARADIGM – Extend				
--	-----	--------------------------------	---	--	--	--	--
Population	RE	VASCULARIZATION	1- <u>12 mo</u>	13- <u>24 mo</u>	25- <u>36 mo</u>	37- <u>48 mo</u>	
NB. ALL-Comer, Unselected P (eg. AFib 8.9%)	•	ipsilateral stroke	n=311 0	n=205 0	n=108 1	n=61 1	
	•	any stroke	0	2 1 cerebellal 1 contralat.	1 brain stem	2 (1 contralat.)	
	•	stroke-related death	0	1	0	1	
	•	MI or other non-cerebral VA	3	3	2	2	
	•	any death	13 CHF-4, Ca-3, PE-1, MI-2 COPD-1,uroseps -1, surg-1	10 CHF-3, Ca-2, MI-2 surg-2, intrac. bleed-	6 CHF-2, Ca-2, MI-1 1 urosepsis -1	4 CHF-2, Ca-2, MI-2	
ESC Congre Paris 2019	ess	in-stent velocities	PSV 0.79 ±0.41m/s EDV 0.21 ±0.11 m/s	PSV 0.75 ±0.36 m/s EDV 0.19 ±0.09 m/s	PSV 0.75 ±0.36 m/s EDV 0.20 ±0.09 m/s	PSV 0.74 ±0.28 m/s EDV 0.20 ±0.07 m/s	

ation	CAROTID PARADIGN	PARADIGM – Extend				
Populat		1- <u>12 mo</u>	13- <u>24 mo</u>	25- <u>36 mo</u>	37- <u>48 mo</u>	
Pol		n=311	n=205	n=108	n=61	
ted	ipsilateral stroke	By 48			1	
nselec ib 8.9%)	any stroke	lorma	1 ceret ILC C		2 (1 contralat.)	
ner U I (eg. AFi	stroke-related death	No Stent			1	
-Cor	MI or other non-cerebral VA	No abnor	mal ^a ISR si	ignal	2	
IB. ALL	e any death	(Per-vessel ISR 0. CHF-4, Ca-3, PE-1, MI-2 COPD-1,uroseps -1, surg-1	CHF-3, Ca-2, MI-2	CHF-2, Ca-2, MI-1	4 CHF-2, Ca-2, MI-2	
Z SC Congress Paris 2019	in-stent velocities	PSV 0.79 ±0.41m/s EDV 0.21 ±0.11 m/s	PSV 0.75 ±0.36 m/s EDV 0.19 ±0.09 m/s	PSV 0.75 ±0.36 m/s EDV 0.20 ±0.09 m/s	PSV 0.74 ±0.28 m/s EDV 0.20 ±0.07 m/s	

PARADIGM-EXTEND

@ 48 months

Favourable Cerebral Outcome

NO device-related adverse events

NO procedure-related events

PARADIGM-EXTEND

@ 48 months

Favourable Cerebral Outcome

NO device-related adverse events

NO procedure-related events

s u s t a i n e d stroke prevention

Endovascular Solution for All-Comers

ESC Congress Paris 2019

Endovascular Reconstruction of the Carotid Bifurcation Prevention of embolism, High radial force, Conformability

Human 3D OCI, symptomatic lesion

systematic

CEA-like effect of CAS

This is the future of Carotid Artery Stenting

Double-Layer Carotid Stents: From the Clinical Need, through a Stent-in-Stent Strategy, to Effective Plaque Isolation... the Journey Toward Safe Carotid Revascularization Using the Endovascular Route Journal of Endovascular Therapy 2019, Vol. 26(4) 572–577 © The Author(s) 2019 Article reuse guidelines: sagepub.com/journals-permissions DOI: 10.1177/1526602819861546 www.jevt.org

Piotr Musiałek, MD, DPhil¹ and Gary S. Roubin, MD, PhD²

Keywords

ESC Congress Paris 2019

carotid artery stenosis, carotid artery stenting, carotid endarterectomy, closed-cell stent, MicroNET, open-cell stent, plaque protrusion, stent-graft, restenosis, double-layer stent, unstable plaque

Both surgical and endovascular routes of carotid revascularization are associated with the risk of symptomatic and asymptomatic cerebral embolism.¹⁻³ Optimized pharmacotherapy, the mainstay of atherosclerosis management, can reduce or delay but not abolish the risk of stroke from atherosclerotic carotid artery stenosis.⁴⁻⁷ Interventional elimination or sequestration of the thromboembolic carotid plaque⁸⁻¹⁰ remains an important consideration in a significant proportion of patients if <u>carotid stenosis–related strokes</u> are to be prevented rather than experienced. This is the focus and the stent free-cell area also affect the risk of embolism after stent placement. Thus, while optimized neuroprotection during CAS may minimize intraprocedural cerebral embolism,^{18-20,23,24} the problem of early or delayed postprocedural embolism remains.^{3,25-27} With optimal patient selection technique and antiplatelet therapy, post-stent embolic phenomena are largely related to intrastent plaque prolapse, balloon trauma, and subsequent embolization. This may occur after the period of intraprocedural cerebral protection using flow reversal techniques and/or filters.

This is the future of Carotid Artery Stenting

