Essential Update: Carotid Disease 2019

Piotr Musiałek

Jagiellonian University Dept. of Cardiac & Vascular Diseases John Paul II Hospital, Kraków, Poland

Disclosures

Proctoring/Speaker Bureau/Advisory Boards - Abbott, InspireMD, Medtronic

Research Support - Abbott (IIS)

This presentation is to my best personal knowledge, without any external bias

These days, <u>asymptomatic</u> carotid stenosis is a benign pathology:

These days, <u>asymptomatic</u> carotid stenosis is a benign pathology:

A. Yes

B. No

C. Don't know

ESC Congress Paris 2019

Every symptomatic carotid plaque

– causing cerebral infarct/stroke –

starts as an asymptomatic plaque

Every *symptomatic* carotid plaque

– causing cerebral infarct/stroke –

starts as an asymptomatic plaque

(aka. "Where are the symptomatic patients coming from?")

- (

Essential Update: Carotid Disease 2019

- The disease
- Who to treat?
- How to treat? (medical therapy, surgery, stents, novel technologies)
- 2017 ESC/ESVS Guidelines: strengths and gaps

Prevalence of CS -in relation to prevalence of <u>AFib</u>- is

- (

Prevalence of CS -in relation to prevalence of AFib- is

- **A.** ≈ **3** : **1** (*more* CS)
- **B.** ≈ 1:1 (*similar* prevalence)
- **C.** ≈ **1** : **3** (more Afib)

Table 14-2. Modifiable Stroke Risk Factors

Factor	Prevalence, %	PAR, %*	RR	
Cigarette smoking				
Overall	19.8	12-14†	1.9	
Men	22.3			
Women	17.4			
Hypertension		ŧ	8	
Ages 20–34 y				
Men	13.4	99		
Women	6.2	98		
Ages 35-44 y				
Men	23.2	99		
Women	16.5	106		
Ages 4554 y				
Men	36.2	100		
Women	35.9	103		
Ages 55–64 y				
Men	53.7	100		
Women	55.8	102		
Ages 65–74 y				
Men	64.7	100		
Women	69.6	101		
Ages ≥75 y				
Men	64.1	100		
Women	76.4	101		
Diabetes mellitus	7.3	5-27	1.8-6.0	
High total cholesterol	Data calculated for highest quintile (20%) vs lowest quintile	9.1 (5.7–13.8)	1.5 (95% Cl, 1.3-1.8)	
	Continuous risk for ischemic stroke		1.25 per 1-mmol/L (38.7 mg/dL) increase	
AF (nonvalvular)				
5059	0.5	1.5	4.0	
60-69	1.8	2.8	2.6	
70–79	4.8	9.9	3.3	
80-89	8.8	23.5	4.5	
Asymptomatic carotid stenosis	2-8	2-7§	2.0	

CLINICAL RESEARCH Atrial fibrillation

Risk of ischaemic stroke according to pattern of atrial fibrillation: analysis of 6563 aspirin-treated patients in ACTIVE-A and AVERROES

Thomas Vanassche^{1*}, Mandy N. Lauw¹, John W. Eikelboom¹, Jeff S. Healey¹, Robert G. Hart¹, Marco Alings², Alvaro Avezum³, Rafael Díaz⁴, Stefan H. Hohnloser⁵, Basil S. Lewis⁶, Olga Shestakovska¹, Jia Wang¹, and Stuart J. Connolly¹

¹Population Health Research Institute, McMaeter University and Hamilton Health Sciences, 237 Barton St. E., Hamilton, ON, Canada LBL 2X2; ²Amphia Ziekenhuis, Breda, The Netherlands; ³Instituto Dante Pazzanese de Cardiologia, Sito Paulo, Brazil; ⁴Estudios Clinicos Latinoamérica, Rosario, Argentina; ³Department of Cardiology, Johann-Wolfgang-Goethe-Universität, Frankfurt, Germany; and ⁴Cardiovascular Clinical Research Institute, Lady Davis Carmel Medical Center and the Ruth and Bruce Rappap ort School of Medicine, Technion-IIT, Haffa, Israel

Aims	The pattern of a trial fibrillation (AF) occurrence—paroxysmal, persistent, or permanent—is associated with progressive stages of a trial dysfunction and structural changes and may therefore be associated with progressively higher stroke risk. However, previous studies have not consistently shown AF pattern to predict stroke but have been hampered by methodological shortcomings of low power, variable event ascertainment, and variable anticoagulant use.
Methods and results	We analysed the rates of stroke and systemic embolism in 6563 aspirin-treated patients with AF from the ACTIVE-A/ AVERROES databases. There was thorough searching for events and adjudication. Multivariable analyses were performed with the adjustment for known risk factors for stroke. Mean age of patients with paroxysmal, persistent, and permanent AF was 69.0 \pm 9.9, 68.6 \pm 10.2, and 71.9 \pm 9.8 years ($P < 0.001$). The CHA ₂ DS ₂ -VASc score was similar in patients with paroxysmal and persistent AF (3.1 \pm 1.4), but was higher in patients with permanent AF (3.6 \pm 1.5, $P < 0.001$). <u>Yearty</u> ischaemic stroke rates were 2.1, 3.0, and 4.2% for paroxysmal, persistent, and permanent AF, respectively, with adjusted hazard ratio of 1.83 ($P < 0.001$) for permanent vs. paroxysmal and 1.44 ($P = 0.02$) for persistent vs. paroxysmal. Multivariable analysis identified age \geq 75 year, sex, history of stroke or TIA, and AF pattern as independent predictors of stroke, with AF pattern being the second strongest predictor after prior stroke or TIA.
Conclusion	In a large population of non-anticoagulated AF patients, pattern of AF was a strong independent predictor of stroke risk and may be helpful to assess the risk/benefit for anticoagulant therapy, especially in lower risk patients.
Keywords	Atrial fibrillation • Paroxysmal • Permanent • Stroke

Carotid Disease: 2019 Update

ESC Congress Paris 2019

Carotid Disease: 2019 Update

Carotid Disease: 2019 Update

-

Carotid Disease: 2019 Update

<u>Why</u> the management of asymptomatic Carotid Stenosis continues to be

so controversial ?

Carotid Disease: 2019 Update

Annual stroke risk with asymptomatic carotid stenosis

Annual stroke risk with asymptomatic carotid stenosis

Paris 2019

-

Annual stroke risk with asymptomatic carotid stenosis

Carotid Disease: 2019 Update

Annual stroke rate with asymptomatic carotid stenosis:

Contemporary cardiovascular clinic patients on OMT

2.4% per year (Conrad MF et al. J Vasc Surg 2013)

2.9% per year (Kakkos SK et al. J Vasc Surg 2014)

<u>Annual stroke rate</u> with asymptomatic carotid stenosis:

Contemporary cardiovascular clinic patients on OMT

2.4% per year (Conrad MF et al. *J Vasc Surg* 2013)... 5 years... 10 years

2.9% per year (Kakkos SK et al. J Vasc Surg 2014)... 5 years... 10 years

Fundamental Issue

"People" with Carotid Stenosis

 \neq

Vascular Clinic Referral Patient

General Popu--lation Subject

annual ipsilateral stroke risk 2.5-3.0% annual ipsilateral stroke risk ≈0.5% Point to remember #2

Fundamental Issue

"People" with Carotid Stenosis

 \neq

Vascular Clinic Referral Patient

General Popu--lation Subject

annual ipsilateral stroke risk 2.5-3.0% annual ipsilateral stroke risk ≈0.5% Q3 There is large-scale Level 1 evidence (Randomized Controlled Trial) that patients with asymptomatic CS benefit from intervention:

Please vote

Q3 There is large-scale Level 1 evidence (Randomized Controlled Trial) that patients with asymptomatic CS benefit from intervention:

A. Yes

B. No

ESC Congress

C. Don't know

ACST-1

3120 asymptomatic CS patients randomised to CEA vs. deferred CEA

Result: successful CEA reduces 10-year stroke risk.

Stroke reduction with revascularization in asymptomatic carotid stenosis

ESC Congress Paris 2019

Carotid Disease: 2019 Update

- (

Stroke reduction with revascularization in asymptomatic carotid stenosis

ESC Congress Paris 2019

Carotid Disease: 2019 Update

-

Stroke reduction with revascularization in asymptomatic carotid stenosis

Carotid Disease: 2019 Update

ESC Congress Paris 2019

- (

-

- (

-

in 10 years (2029)

ESC Congress Paris 2019

in 10 years (2029)

Point to remember #3

Stroke: "Systematic Review and Analysis"...

A.	h	h	0	tt	
P1	υ	υ	U	u	

Medical Intervention Alone for Asymptomatic Carotids

e575

Table 1. Average Annual Stroke +/-TIA Rates of Patients With Asymptomatic Severe (>50%) Carotid Stenosis Managed With Medical Intervention Alone (%)*

Study	Sample Size	Ipsilateral Stroke		Ipsilateral Stroke/TIA		Any Territory Stroke		Any Territory Stroke/TIA	
		Raw Data	KM Estimates	Raw Data	KM Estimates	Raw Data	KM Estimates	Raw Data	KM Estimates
Johnson, 1985 ⁷⁶	121	3.3		19.0					
Toronto, 1986 ²	113	0		7.9 (all TIA)		1.9		10.7	11.0
VACS, 199310	233	2.4		5.2		3.0		6.1	
ACAS, 199511	834	2.3	2.2	4.5	3.8	3.8	3.5		
ECST, 199577	127	2.3	1.9						
ACBS, 199778	357	1.2	1.4	3.4	4.2	2.1	2.5	5.8	
CHS, 199882	185	1.3	1.0			2.6	2.3		
NASCET, 2000 ³	216		3.2						
ACSRS, 200579	1115	1.3	1.7	3.1	3.4		2.1		4.1
ASED, 200580	202	1.2	1.0	3.2	3.1	2.4	2.2	5.6	5.1
SMART, 2007 ⁸¹	221	0.6				0.7			

*ACAS indicates Asymptomatic Carotid Atherosclerosis Study; ECST, European Carotid Surgery Trial; ACBS, Asymptomatic Cervical Bruit Study; NASCET, North American Symptomatic Carotid Endarterectomy Trial; ACSRS, Asymptomatic Carotid Stenosis and Risk of Stroke Study; ASED, Asymptomatic Stenosis Embolus Detection Study; SMART, Second Manifestations of ARTerial disease Study.

_
Stroke: "Systematic Review and Analysis"...

Abbott

Medical Intervention Alone for Asymptomatic Carotids

e575

Table 1. Average Annual Stroke +/-TIA Rates of Patients With Asymptomatic Severe (>50%) Carotid Stenosis Managed WithMedical Intervention Alone (%)*

		lpsilat	eral Stroke	Ipsilatera	I Stroke/TIA	Any Ter	ritory Stroke	1 m	
Study	Sample Size	Raw Data	KM Estimates	Raw Data	KM Estimates	Raw Data	KM Estimates	Raw Pata	KM Estimates
Johnson, 1985 ⁷⁶	121	3.3		19.0					
Toronto, 1986 ²	113	0		7.9 (all TIA)		- 9		10.7	11.0
VACS, 1993 ¹⁰	233	2.4		5.2		.0		6.1	
ACAS, 199511	834	2.3	2.2	4.5	3	3.8	3.5		
ECST, 199577	127	2.3	1.9						
ACBS, 199778	357	1.2	1.4	- 64	4.2	2.1	2.5	5.8	
CHS, 1998 ⁸²	185	1.3	1.0			2.6	2.3		
NASCET, 2000 ³	216								
ACSRS, 200579	1115	1.3		3.1	3.4		2.1		4.1
ASED, 200580	202		1.0	3.2	3.1	2.4	2.2	5.6	5.1
SMART, 2007 ⁸¹	221	0.6				0.7			

*ACAS indicates Asymptomatic Carotid Atherosclerosis Study; ECST, European Carotid Surgery Trial; ACBS, Asymptomatic Cervical Bruit Study; NASCET, North American Symptomatic Carotid Endarterectomy Trial; ACSRS, Asymptomatic Carotid Stenosis and Risk of Stroke Study; ASED, Asymptomatic Stenosis Embolus Detection Study; SMART, Second Manifestations of ARTerial disease Study.

ESC Congress Paris 2019

-

Stroke: "Systematic Review and Analysis"...

Abbott

Medical Intervention Alone for Asymptomatic Carotids

e575

 Table 1. Average Annual Stroke +/-TIA Rates of Patients With Asymptomatic Severe (>50%) Carotid Stenosis Managed With Medical Intervention Alone (%)*

		Ipsilateral Stroke		Ipsilateral Stroke/TIA		Any Territory Stroke		Arrn ry Stroke/TIA	
Study	Sample Size	Raw Data	KM Estimates	Raw Data	KM Estimates	Raw Data	KM Estimates	Raw Pata	KM Estimates
Johnson, 1985 ⁷⁶	121	3.3		19.0					
Toronto, 1986 ²	113	0		7.9 (all TIA)		9	····	10.7	11.0
VACS, 199310	233	2.4		5.2		.0		6.1	
ACAS, 199511	834	2.3	2.2	4.5	3	3.8	3.5		
ECST, 199577	127	2.3	1.9						
ACBS, 199778	357	1.2	1.4	- 24	4.2	2.1	2.5	5.8	
CHS, 1998 ⁸²	185	1.3	1.0			2.6	2.3		
NASCET, 2000 ³	216		1.0 P						
ACSRS, 200579	1115	1.3		3.1	3.4		2.1		4.1
ASED, 200580	202		1.0	3.2	3.1	2.4	2.2	5.6	5.1
SMART, 2007 ⁸¹	221	0.6				0.7			

*ACAS indicates Asymptomatic Carotid Atherosclerosis Study; ECST, European Carotid Surgery Trial; ACBS, Asymptomatic Cervical Bruit Study; NASCET, North American Symptomatic Carotid Endarterectomy Trial; ACSRS, Asymptomatic Carotid Stenosis and Risk of Stroke Study; ASED, Asymptomatic Stenosis Embolus Detection Study; SMART, Second Manifestations of ARTerial disease Study.

Even if a "good" journal – READ critically !

-

Assumptions

are not powered to dismiss

Large-scale level 1 evidence

(ACST, >3100 pts)

Carotid Disease: 2019 Update

Determining "Symptomatic" CS...

Symptoms vs. Signs

- (

Determining "Symptomatic" CS...

Symptoms vs. Signs stroke cerebral infarct

- (

How asymptomatic is "asymptomatic" carotid stenosis?

Resolving fundamental confusion(s)—and confusions yet to be resolved

Piotr Musiałek¹, Iris Q. Grunwald^{2,3}

ESC Congress

Paris 2019

1 Department of Cardiac and Vascular Diseases, Jagiellonian University Medical College, John Paul II Hospital, Kraków, Poland

- 2 Neuroscience and Vascular Simulation, Anglia Ruskin University, Chelmsford, United Kingdom
- 3 Southend University Hospital NHS Foundation Trust, Westcliff-on-Sea, United Kingdom

Atherosclerotic stenosis of the internal carotid artery of 50% or more is a relatively common pathology (about 2% to 8% of the general population aged 60 to 80 years), with the prevalence similar to that of nonvalvular atrial fibrillation.¹ However, patients with manifest atherosclerosis in other vascular beds show a significantly greater prevalence of carotid stenosis (CS) and a greater risk of cerebral symptoms that occur through the thromboembolic or hemodynamic mechanisms.²

The ACST-1 trial³ in 3120 patients with asymptomatic CS followed for 10 years demonstrated, with an elective (rather than deferred) CS revascularization, a profound absolute risk reduction in nonperioperative stroke by 5.9% at 5 years (risk reduction from 11.0% to 5.1%) and 6.1% at 10 years (risk reduction from 16.9% to 10.8%, with the magnitude of the effect maintained in patients on lipid--lowering therapy).3 Surprisingly, in the absence of any new randomized data, there have been vocal calls recently to disregard the level-1 evidence from the ACST-1 trial through either ignoring the trial completely in some meta-analyses4 or attempting to construct an alternative body of "new evidence." Such "new-evidence" observational studies, performed not infrequently in as few as 100 subjects⁵ (rather than the usually referenced 1153 subjects)⁵ followed for a relatively short time⁵ (and with most transient ischemic attacks [TIAs] leading-rightly-to carotid revascularization to prewith asymptomatic CS on optimized medical therapy (OMT). As the risk is cumulative, the annual risk level of about 2.5% to 3.0% indicates-for instance for a 50-year-old man with an asymptomatic CS on contemporary OMT-a statistical stroke risk of about 25% to 30% by the age of 60 and 50% to 60% by the age of 70 (the actual risk can be still higher when additional risk factors, such as diabetes, are present).² As 85% of strokes occur without a warning sign, and of those who survive stroke (about 40% at 5 years) about half are disabled,2 many families and physicians find it difficult to ignore such a risk.4 This is particularly relevant because contemporary CS revascularization studies continue to enroll patients with CS strokes despite OMT; this provdes circumstantial evidence that OMT, at least in some patients, does not sufficiently protect against stroke.4

So why is the management of asymptomatic CS (to some at least) controversial today? Principal reasons seem to stem from: 1) definition problems ("asymptomatic" vs "symptomatic" CS; "stroke" vs "cerebral infarct"); 2) fundamental differences between the low-risk general population and higher-risk populations with atherosclerotic disease manifestations; 3) poor appreciation of increased stroke risk characteristics in CS; 4) risk of intervention (until recently) of about 3%⁹; and 5) lack of randomized data (OMT vs OMT + intervention) in current populations with asymptomatic CS across the whole risk spectrum.

.

Q4 The CREST Randomized Controlled Trial, (conducted in 2502 pts, 53% symptomatic) showed, in primary endpoint and long-term follow-up, EQUIVALENCE of CEA and first-generation CAS:

Q4 The CREST Randomized Controlled Trial, (conducted in 2502 pts, 53% symptomatic) showed, in primary endpoint and long-term follow-up, EQUIVALENCE of CEA and first-generation CAS:

A. Yes

B. No

C. Don't know

			Periprocedural Period	N Engl J Med 2	010;363:11-2
CREST	CAS (N=1262)	CEA (N=1240)	Absolute Treatment Effect of CAS vs. CEA (95% CI)	Hazard Ratio for CAS vs. CEA (95% CI)	P Value
	no. of patier	nts (% ±SE)	percentage points		
Death	9 (0.7±0.2)	4 (0.3±0.2)	0.4 (-0.2 to 1.0)	2.25 (0.69 to 7.30)†	0.18†
Stroke					
Any	52 (4.1±0.6)	29 (2.3±0.4)	1.8 (0.4 to 3.2)	1.79 (1.14 to 2.82)	0.01
Major ipsilateral	11 (0.9±0.3)	4 (0.3±0.2)	0.5 (-0.1 to 1.2)	2.67 (0.85 to 8.40)	0.09
Major nonipsilateral‡	0	4 (0.3±0.2)	NA	NA	NA
Minor ipsilateral	37 (2.9±0.5)	17 (1.4±0.3)	1.6 (0.4 to 2.7)	2.16 (1.22 to 3.83)	0.009
Minor nonipsilateral	4 (0.3±0.2)	4 (0.3±0.2)	0.0 (-0.4 to 0.4)	1.02 (0.25 to 4.07)	0.98†
Myocardial infarction	14 (1.1±0.3)	28 (2.3±0.4)	-1.1 (-2.2 to -0.1)	0.50 (0.26 to 0.94)	0.03
Any periprocedural stroke or postprocedural ipsilateral stroke	52 (4.1±0.6)	29 (2.3±0.4)	1.8 (0.4 to 3.2)	1.79 (1.14 to 2.82)	0.01
Major stroke	11 (0.9±0.3)	8 (0.6±0.2)	0.2 (-0.5 to 0.9)	1.35 (0.54 to 3.36)	0.52
Minor stroke	41 (3.2±0.5)	21 (1.7±0.4)	1.6 (0.3 to 2.8)	1.95 (1.15 to 3.30)	0.01
Any periprocedural stroke or death or post- procedural ipsilateral stroke	55 (4.4±0.6)	29 (2.3±0.4)	2.0 (0.6 to 3.4)	1.90 (1.21 to 2.98)	0.005
Primary end point (any periprocedural stroke, myocardial infarction, or death or postprocedural ipsilateral stroke)	66 (5.2±0.6)	56 (4.5±0.6)	0.7 (-1.0 to 2.4)	1.18 (0.82 to 1.68)	0.38

.

			Periprocedural Period	N Engl J Med 2	010;363:11-
CREST	CAS (N=1262)	CEA (N=1240)	Absolute Treatment Effect of CAS vs. CEA (95% CI)	Hazard Ratio for CAS vs. CEA (95% CI)	P Value
	no. of patier	nts (% ±SE)	percentage points		
Death	9 (0.7±0.2)	4 (0.3±0.2)	0.4 (-0.2 to 1.0)	2.25 (0.69 to 7.30)†	0.18†
Stroke					
Any	52 (4.1±0.6)	29 (2.3±0.4)	1.8 (0.4 to 3.2)	1.79 (1.14 to 2.82)	0.01
Major ipsilateral	11 (0.9±0.3)	4 (0.3±0.2)	0.5 (-0.1 to 1.2)	2.67 (0.85 to 8.40)	0.09
Major nonipsilateral‡	0	4 (0.3±0.2)	NA	NA	NA
Minor ipsilateral	37 (2.9±0.5)	17 (1.4±0.3)	1.6 (0.4 to 2.7)	2.16 (1.22 to 3.83)	0.009
Minor nonipsilateral	4 (0.3±0.2)	4 (0.3±0.2)	0.0 (-0.4 to 0.4)	1.02 (0.25 to 4.07)	0.98†
Myocardial infarction	14 (1.1±0.3)	28 (2.3±0.4)	-1.1 (-2.2 to -0.1)	0.50 (0.26 to 0.94)	0.03
Any periprocedural stroke or postprocedural ipsilateral stroke	52 (4.1±0.6)	29 (2.3±0.4)	1.8 (0.4 to 3.2)	1.79 (1.14 to 2.82)	0.01
Major stroke	11 (0.9±0.3)	8 (0.6±0.2)	0.2 (-0.5 to 0.9)	1.35 (0.54 to 3.36)	0.52
➡ Minor stroke	41 (3.2±0.5)	21 (1.7±0.4)	1.6 (0.3 to 2.8)	1.95 (1.15 to 3.30)	0.01
Any periprocedural stroke or death or post- procedural ipsilateral stroke	55 (4.4±0.6)	29 (2.3±0.4)	2.0 (0.6 to 3.4)	1.90 (1.21 to 2.98)	0.005
Primary end point (any periprocedural stroke, myocardial infarction, or death or postprocedural ipsilateral stroke)	66 (5.2±0.6)	56 (4.5±0.6)	0.7 (-1.0 to 2.4)	1.18 (0.82 to 1.68)	0.38

.

			Periprocedural Period	N Engl J Med 2	010;363:11-2
CREST	CAS (N=1262)	CEA (N=1240)	Absolute Treatment Effect of CAS vs. CEA (95% CI)	Hazard Ratio for CAS vs. CEA (95% CI)	P Value
	no. of patie	nts (% ±SE)	percentage points		
Death	9 (0.7±0.2)	4 (0.3±0.2)	0.4 (-0.2 to 1.0)	2.25 (0.69 to 7.30)†	0.18†
Stroke					
Any	52 (4.1±0.6)	29 (2.3±0.4)	1.8 (0.4 to 3.2)	1.79 (1.14 to 2.82)	0.01
Major ipsilateral	11 (0.9±0.3)	4 (0.3±0.2)	0.5 (-0.1 to 1.2)	2.67 (0.85 to 8.40)	0.09
Major nonipsilateral‡	0	4 (0.3±0.2)	NA	NA	NA
Minor ipsilateral	37 (2.9±0.5)	17 (1.4±0.3)	1.6 (0.4 to 2.7)	2.16 (1.22 to 3.83)	0.009
Minor nonipsilateral	4 (0.3±0.2)	4 (0.3±0.2)	0.0 (-0.4 to 0.4)	1.02 (0.25 to 4.07)	0.98†
Myocardial infarction	14 (1.1±0.3)	28 (2.3±0.4)	-1.1 (-2.2 to -0.1)	0.50 (0.26 to 0.94)	0.03
Any periprocedural stroke or postprocedural ipsilateral stroke	52 (4.1±0.6)	28 (2.3±0.4)	1.8 (0.4 to 3.2)	1.79 (1.14 to 2.82)	0.01
Major stroke	11 (0.9±0.3)	8 (0.6±0.2)	0.2 (-0.5 to 0.9)	1.35 (0.54 to 3.36)	0.52
➡ Minor stroke	41 (3.2±0.5)	21 (1.7±0.4)	1.6 (0.3 to 2.8)	1.95 (1.15 to 3.30)	0.01
Any periprocedural stroke or death or post- procedural ipsilateral stroke	55 (4.4±0.6)	29 (2.3±0.4)	2.0 (0.6 to 3.4)	1.90 (1.21 to 2.98)	0.005
Primary end point (any periprocedural stroke, myocardial infarction, or death or postprocedural ipsilateral stroke)	66 (5.2±0.6)	56 (4.5±0.6)	0.7 (-1.0 to 2.4)	1.18 (0.82 to 1.68)	0.38
			. 55		

Carotid Disease: 2019 Update

The first 30 days make the difference:

Paris 2019

CEA vs conventional-stent CAS

ACT-1 RCT: **Neuroprotected CAS** (first-generation stent) vs . **CEA** in 1453 average surgical risk patients

Primary endpoint: Freedom from death, stroke, MI by 30 days Freedom from clinically-driven target lesion revascularization by 5 years and from ipsilateral stroke by 365 days 100-100 90-— Stenting 90- Endarterectomy Event-free Survival (%) Event-free Survival (%) 80-80 — Stenting Endarterectomy 70-70-60-60-P=0.04 (by Wilcoxon test) 50-P=0.69 (by Wilcoxon rank-sum test) 50 0 Censored 0 Censored 125 150 175 200 225 250 275 300 325 350 375 25 75 100 200 400 600 1000 1200 1400 1600 2000 50 800 1800 **Neuroprotected CAS** (first-generation stent) Day NON-INFERIOR to CEA

Rosenfield et al, NEJM 2016

ESC Congress Paris 2019

Carotid Disease: 2019 Update

JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY © 2017 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION PUBLISHED BY ELSEVIER VOL. 69, NO. 18, 2017 ISSN 0735-1097/\$36.00 http://dx.doi.org/10.1016/j.jacc.2017.02.053

Carotid Artery Stenting Versus Endarterectomy for Stroke Prevention

A Meta-Analysis of Clinical Trials

Partha Sardar, MD,^a Saurav Chatterjee, MD,^b Herbert D. Aronow, MD,^c Amartya Kundu, MD,^d Preethi Ramchand, MD,^e Debabrata Mukherjee, MD,^f Ramez Nairooz, MD,^g William A. Gray, MD,^h Christopher J. White, MD,ⁱ Michael R. Jaff, DO,^j Kenneth Rosenfield, MD,^j Jay Giri, MD^{k,l}

RESULTS We analyzed 6,526 patients from 5 trials with a mean follow-up of 5.3 years. The <u>composite outcome</u> of periprocedural death, stroke, myocardial infarction (MI), or nonperiprocedural ipsilateral stroke was <u>not</u> significantly different between therapies (OR: 1.22; 95% CI: 0.94 to 1.59). The risk of any periprocedural stroke plus nonperiprocedural ipsilateral stroke was higher with CAS (OR: 1.50; 95% CI: 1.22 to 1.84). The risk of higher stroke with CAS was mostly attributed to periprocedural minor stroke (OR: 2.43; 95% CI: 1.71 to 3.46). CAS was associated with significantly lower risk of periprocedural MI (OR: 0.45; 95% CI: 0.27 to 0.75); cranial nerve palsy (OR: 0.07; 95% CI: 0.04 to 0.14); and the composite outcome of death, stroke, MI, or cranial nerve palsy during the periprocedural period (OR: 0.75; 95% CI: 0.60 to 0.93).

JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY © 2017 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION PUBLISHED BY ELSEVIER VOL. 69, NO. 18, 2017 ISSN 0735-1097/\$36.00 http://dx.doi.org/10.1016/j.jacc.2017.02.053

Carotid Artery Stenting Versus Endarterectomy for Stroke Prevention

A Meta-Analysis of Clinical Trials

Partha Sardar, MD,^a Saurav Chatterjee, MD,^b Herbert D. Aronow, MD,^c Amartya Kundu, MD,^d Preethi Ramchand, MD,^e Debabrata Mukherjee, MD,^f Ramez Nairooz, MD,^g William A. Gray, MD,^h Christopher J. White, MD,ⁱ Michael R. Jaff, DO,^j Kenneth Rosenfield, MD,^j Jay Giri, MD^{k,l}

RESULTS We analyzed 6,526 patients from 5 trials with a mean follow-up of 5.3 years. The composite outcome of periprocedural death, stroke, myocardial infarction (MI), or nonperiprocedural ipsilateral stroke was not significantly different between therapies (OR: 1.22; 95% CI: 0.94 to 1.59). The risk of any periprocedural stroke plus nonperiprocedural ipsilateral stroke was higher with CAS (OR: 1.50; 95% CI: 1.22 to 1.84). The risk of higher stroke with CAS was mostly attributed to periprocedural minor stroke (OR: 2.43; 95% CI: 1.71 to 3.46). CAS was associated with significantly lower risk of periprocedural MI (OR: 0.45; 95% CI: 0.27 to 0.75); cranial nerve palsy (OR: 0.07; 95% CI: 0.04 to 0.14); and the composite outcome of death, stroke, MI, or cranial nerve palsy during the periprocedural period (OR: 0.75; 95% CI: 0.60 to 0.93).

Table 4Features associated with increased risk ofstroke in patients with asymptomatic carotid stenosistreated medically (for details see Web Table 5

		-
Clinical ^a	Contralateral TIA/stroke ¹²¹	
Cerebral imaging	 Ipsilateral silent infarction¹²² 	
Ultrasound imaging	 Stenosis progression (> 20%)¹²³ Spontaneous embolization on transcranial Doppler (HITS)¹²⁴ Impaired cerebral vascular reserve¹²⁵ Large plaques^{b126} Echolucent plaques⁹⁶ Increased juxta-luminal black (hypoechogenic) area¹²⁷ 	
MRA	 Intraplaque haemorrhage¹²⁸ Lipid-rich necrotic core 	

HITS = high intensity transient signal; MRA = magnetic resonance angiography;

TIA = transient ischaemic attack.

^aAge is not a predictor of poorer outcome.

ESC Congress Paris 2019

^bMore than 40 mm² on digital analysis.

thrombus-containing
 documented progressive
 irregular and/or ulcerated
 contralateral ICA occlusion/stroke
 asymptomatic ipsilateral brain infarct

AbuRahma A et al. *Ann Surg.* 2003;238:551-562. Ballotta E et al. *J Vasc Surg* 2007;45:516-522. Kakkos SK et al. (ACSRS) *J Vasc Surg.* 2009;49:902-909. Lovett JK et al. *Circulation* 2004;110:2190-97 Nicolaides AN et al. *J Vasc Surg* 2010;52:1486-96. Taussky P et al. *Neurosurg Focus* 2011;31:6-17. Table 4Features associated with increased risk ofstroke in patients with asymptomatic carotid stenosistreated medically (for details see Web Table 5

Clinicalª	Contralateral TIA/stroke ¹²¹]
Chincar		
Cerebral imaging	 Ipsilateral silent infarction¹²² 	
	 Stenosis progression (> 20%)¹²³ 	
Ultrasound	• Spontaneous embolization on transcranial Doppler (HITS) ¹²⁴	
imaging	 Impaired cerebral vascular reserve¹²⁵ 	
	• Large plaques ^{b126}	
	• Echolucent plaques ⁹⁶	
	• Increased juxta-luminal black (hypoechogenic) area ¹²⁷	~
MRA	 Intraplaque haemorrhage¹²⁸ Lipid-rich necrotic core 	BEAC 2017
		6

HITS = high intensity transient signal; MRA = magnetic resonance angiography;

TIA = transient ischaemic attack.

^aAge is not a predictor of poorer outcome.

ESC Congress More than 40 mm² on digital analysis. Paris 2019

AbuRahma A et al. *Ann Surg.* 2003;238:551-562. Ballotta E et al. *J Vasc Surg* 2007;45:516-522. Kakkos SK et al. (ACSRS) *J Vasc Surg.* 2009;49:902-909. Lovett JK et al. *Circulation* 2004;110:2190-97 Nicolaides AN et al. *J Vasc Surg* 2010;52:1486-96. Taussky P et al. *Neurosurg Focus* 2011;31:6-17.

Spontaneous embolization (TCD) in Symptomatic patients admitted for CEA

results (ii) spontaneous embolisa	ation on pre-oper	
30 minutes TCD monitoring	current audit	preceding audits
accessible TCD window embolus positive embolus negative	83/100 5 (6%) 78 (94%)	189/212 39 (21%) 150 (79%)
OR 4.1 (95	%Cl 1.5-10.7); p=	0.0047

R Naylor, Charing Cross 2016

ESC Congress Paris 2019 plus...

- cumbersome
- poorly standardized
- poorly reproducible

any practical value today in riskstratification of Asymptomatic CS

Conventional Carotid Stents

Conventional Carotid Stents Do Have A Problem

<u>Post-procedural</u> Embolization with conventional carotid stents DW-MRI post CAS

Mean total lesion area

Carotid Disease: 2019 Update

Conventional Carotid Stents Do Have A Problem

This translates into post-procedural minor strokes during the stent healing (\approx 30days)

(CREST, CAPTURE) ≈40% 30d-strokes are post-procedural

Human carotid artery treated using a conventional stent; OCT

JACC: CARDIOVASCULAR INTERVENTIONS © 2017 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION PUBLISHED BY ELSEVIER VOL. 10, NO. 8, 2017 ISSN 1936-8798/\$36.00 http://dx.doi.org/10.1016/j.jcin.2017.01.029

PERIPHERAL

Carotid Artery Stenting

Investigation of Plaque Protrusion Incidence and Prognosis

Masashi Kotsugi, MD,^a Katsutoshi Takayama, MD,^b Kaoru Myouchin, MD,^b Takeshi Wada, MD,^c Ichiro Nakagawa, MD,^d Hiroyuki Nakagawa, MD,^c Toshiaki Taoka, MD,^c Shinichiro Kurokawa, MD,^a Hiroyuki Nakase, MD,^d Kimihiko Kichikawa, MD^c

RESULTS PP was observed in 9 cases (2.6%). Ischemic stroke occurred in 6 of 9 PP cases (66.7%; 1 major, 5 minor). Ischemic lesions were observed on diffusion-weighted imaging in 8 of 9 cases (88.9%). <u>PP was strongly associated with</u> perioperative ischemic stroke. A significant increase in PP susceptibility was observed with open-cell stent use and unstable plaque.

CONCLUSIONS The incidence of PP in CAS was 2.6%, with a high risk of ischemic complications if PP was observed. The present findings indicate the necessity of appropriate device selection to avoid PP.

<u>Timing of neuro-embolic events after CAS</u>

Paris 2019

D. McCormick TCT 2012, modified

Conventional Carotid Stent

Plaque protrusion may lead to early and late distal embolization

Conventional Carotid Stent

Plaque protrusion may lead to early and late distal embolization

FUNDAMENTAL

•CEA, by excluding the plaque, excludes the post-procedural problem of the plaque

FUNDAMENTAL

•CEA, by excluding the plaque, excludes the post-procedural problem of the plaque

 In CAS, the <u>stent needs to</u> <u>exclude the plaque too</u>

- (

FUNDAMENTAL

•CEA, by excluding the plaque, excludes the post-procedural problem of the plaque

 In CAS, the <u>stent needs to</u> <u>exclude the plaque too</u>

• <u>Periprocedural embolization</u> may be protected with EPD (mesh stent, once implanted, may inhibit the plaque embolic potential)

 <u>Post-procedural</u> embolization may not be protected with EPD but it may be protected with improved stent design - Mesh Stents

Stenting vs. Surgery

Carotid Disease: 2019 Update

Collaborators are free to use their usual techniques

ESC Congress GA or LA; Primary or patch closure... Paris 2019

Any CE marked stent. EPD not mandated

Carotid Disease: 2019 Update

Courtesy A Halliday 2019

Collaborators are free to use their usual techniques

ESC Congress GA or LA; Primary or patch closure... Paris 2019

Any CE marked stent. EPD not mandated

Carotid Disease: 2019 Update

Courtesy A Halliday 2019

ACST-2 Recruitment target = 3600

Mean follow-up 2019

CEA: 4.0 person-years

CAS: 4.0 person-years

Overall peri-procedural Death/Major Stroke ≈1%

Courtesy A Halliday 2019

ESC Congress Paris 2019

The Carotid Revascularization and Medical Management for Asymptomatic Carotid Stenosis Study

Health and Hope for Patients at Risk for Stroke

Treatment Option 1 Medical Management vs 2 CEA or 3 CAS
The success of CREST-2... (OMT + Intervention in asympt. CS vs OMT only)

will critically depend on

1. Effective recruitment (inclusion) of HIGH-risk asympt. CS pts

2. Safe intervention (CEA arm, CAS arm)

HIGH-risk asympt. CS pts naturally gravitate towards Intervention

(RCT patient selection bias)

SPACE-2: A Missed Opportunity to Compare Carotid Endarterectomy, Carotid Stenting, and Best Medical Treatment in Patients with Asymptomatic Carotid Stenoses

H.-H. Eckstein^a, T. Reiff^b, P. Ringleb^b, O. Jansen^c, U. Mansmann^d, W. Hacke^{b,*}, on behalf of the SPACE 2 Investigators

^a Department of Vascular and Endovascular Surgery, Technical University of Munich, Munich, Germany

^b Department of Neurology, University of Heidelberg, Heidelberg, Germany

^c Department of Radiology and Neuroradiology, UKSH Campus Kiel, Kiel, Germany

^d Institute of Medical Informatics, Biometry and Epidemiology, Ludwig Maximilian University Munich, Munich, Germany

WHAT THIS PAPER ADDS

Despite being considered to be a very important study, the SPACE-2 randomized trial had to be abandoned after recruiting only 513 patients. Reasons for the poor recruitment rates were multifactorial and included <u>patient</u> <u>unwillingness to accept medical therapy alone</u> (having originally been referred for an intervention), the availability of reimbursement for CEA and CAS outwith the trial despite a lack of high-quality evidence justifying any intervention, and financial 'penalties' to hospitals/clinicians because patients randomized to BMT did not attract additional reimbursement. There are important lessons to be learned for future RCTs.

AMTEC RCT in Asymptomatic CS: Trial **STOPPED** by DSMB

ESC Congress Paris 2019 Given the lack of significant differences in baseline parameters between groups and a significant increase in the number of primary composite end point in the group of MMT (6.5% and 37.5%, P = .008), 10 of the 12 committee members decided to stop patient recruitment at the second meeting.

Impact of the Tx mode on the QoL

Health-related quality of life in ischaemic stroke survivors after carotid endarterectomy (CEA) and carotid artery stenting (CAS): confounder-controlled analysis

DOI: https://doi.org/10.5114/aic.2019.84441

Adv Interv Cardiol

Modern CAS therapy

Statins and DAPT lower peri-procedural risk and ...

- Newer stent designs
- Flow reversal (MOMA)
- Direct cervical access (TCAR) risl
- Greater experience

reduce risk further

Can

ESC Congress Paris 2019

Microembolization During Carotid Artery Stenting

A Randomized Trial of Proximal Versus Distal Cerebral Protection

Microembolization During Carotid Artery Stenting

63-yo woman recurrent TIAs Stroke-in-evolution

A Randomized Trial of Proximal Versus Distal Cerebral Protection

Evolving Stroke

Safe, effective, minimally-invasive therapeutic procedure

ESC Congress Paris 2019

Point to remember #8

Carotid Disease: 2019 Update

-0

Patient A/S, discharged home @ Day2 post procedure

Normal stent image

OCTOBER 2014:1177-83

<u>Why</u> the management of asymptomatic Carotid Stenosis continues to be

so controversial ?

A/S Carotid Stenosis Decision-making

A/S Carotid Stenosis Decision-making

A/S Carotid Stenosis Decision-making

JACC: CARDIOVASCULAR INTERVENTIONS © 2018 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION PUBLISHED BY ELSEVIER

Use of <u>Dual-Laye</u>red Stents in Endovascular Treatment of Extracranial Stenosis of the Internal Carotid Artery

Results of a Patient-Based Meta-Analysis of 4 Clinical Studies

Eugenio Stabile, MD, PHD,^a Gianmarco de Donato, MD, PHD,^b Piotr Musialek, MD, PHD,^c Koen De Loose, MD,^d Roberto Nerla, MD,^e Pasqualino Sirignano, MD,^f Salvatore Chianese, MD,^a Adam Mazurek, MD,^c Tullio Tesorio, MD,^g Marc Bosiers, MD,^d Carlo Setacci, MD,^b Francesco Speziale, MD,^f Antonio Micari, MD,^d Giovanni Esposito, MD, PHD^a

TABLE 2 Incidence of Adverse Clinical Events up to 30 Days of Follow-Up

	Peri-Procedural (in Hospital)	Discharge to 30 Days	Total 30 Days
Minor stroke	1.07 (6)	0.17 (1)	1.25 (7)
Major stroke	0 (0)	0 (0)	0 (0)
Death	0 (0)	0.17 (1)	0.17 (1)
Any stroke and death	% 1.07 (6)	0.36 (2)	% 1.44(8)

Patient-level meta-analysis

0-day 556 patients

(both symptomatic and asymptomatic)

JACC: CARDIOVASCULAR INTERVENTIONS © 2018 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION PUBLISHED BY ELSEVIER

ESC Congress Paris 2019

Use of <u>Dual-Laye</u>red Stents in Endovascular Treatment of Extracranial Stenosis of the Internal Carotid Artery

Results of a Patient-Based Meta-Analysis of 4 Clinical Studies

Eugenio Stabile, MD, PHD,^a Gianmarco de Donato, MD, PHD,^b Piotr Musialek, MD, PHD,^c Koen De Loose, MD,^d Roberto Nerla, MD,^e Pasqualino Sirignano, MD,^f Salvatore Chianese, MD,^a Adam Mazurek, MD,^c Tullio Tesorio, MD,^g Marc Bosiers, MD,^d Carlo Setacci, MD,^b Francesco Speziale, MD,^f Antonio Micari, MD,^d Giovanni Esposito, MD, PHD^a

"This meta-analysis suggests that DLS can be *safely* used for CAS, and <u>their use minimizes the</u> <u>incremental risk related to</u> <u>symptomatic status and other</u> <u>risk factors</u>". <image>

TABLE 3 Clinical and Procedural Characteristics Affecting the Occurrence of In-Hospital Stroke

	Incidence in Patients With the Characteristic	Incidence in Patients Without the Characteristic	Relative Risk	Odds Ratio (95% Cl)	p Value
Octogenarians	0	1.3 (6)	0	0	0.63
Smoking	1.4 (5)	0.4 (1)	3.22	3.25 (0.37-27.79)	0.73
Hypertension	2.2 (5)	0.2 (1)	7.57	7.73 (0.10-7.65)	0.18
Diabetes	1.1 (2)	1.0 (4)	1.1	1.10 (0.20-6.07)	0.99
Dyslipidemia	1.2 (5)	0.7 (1)	1.71	1.72 (0.20-14.75)	0.96
Symptomatic status	1.0 (1)	1 (5)	0.95	0.95 (0.11-8.23)	0.99
Use of protection system	1.1 (6)	0			0.91
Use of proximal protection	0	1.6 (6)	0	0	0.52
Pre-dilatation	1.0 (2)	1.1 (4)	0.94	0.93 (0.17-5.15)	0.99
Roadsaver stent	0	1.9 (6)	0	0	0.17
Post-dilatation	0.9 (5)	2.9 (1)	0.32	0.31 (0.03-2.80)	0.75

JACC: CARDIOVASCULAR INTERVENTIONS © 2018 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION PUBLISHED BY ELSEVIER

ESC Congress Paris 2019

Use of Dual-Layered Stents in **Endovascular Treatment of Extracranial Stenosis of the Internal Carotid Artery**

Results of a Patient-Based Meta-Analysis of 4 Clinical Studies

Eugenio Stabile, MD, PHD,^a Gianmarco de Donato, MD, PHD,^b Piotr Musialek, MD, PHD,^c Koen De Loose, MD,^d Roberto Nerla, MD,^e Pasqualino Sirignano, MD,^f Salvatore Chianese, MD,^a Adam Mazurek, MD,^c Tullio Tesorio, MD,^g Marc Bosiers, MD,^d Carlo Setacci, MD,^b Francesco Speziale, MD,^f Antonio Micari, MD,^d Giovanni Esposito, MD, PHD^a

VOL. 11, NO. 23, 2018

"This meta-analysis suggests that DLS can be *safely* used for CAS, and their use minimizes the incremental risk related to symptomatic status and other risk factors".

TABLE 3 Clinical and Procedural Characteristics Affecting the Occurrence of **In-Hospital Stroke**

		Incidence in Patients With the Characteristic	Incidence in Patients Without the Characteristic	Relative Risk	Odds Ratio (95% Cl)	p Value
[Octogenarians	0	1.3 (6)	0	0	0.63
	Smoking	1.4 (5)	0.4 (1)	3.22	3.25 (0.37-27.79)	0.73
	Hypertension	2.2 (5)	0.2 (1)	7.57	7.73 (0.10-7.65)	0.18
	Diabetes	1.1 (2)	1.0 (4)	1.1	1.10 (0.20-6.07)	0.99
	Dyslipidemia	1.2 (5)	0.7 (1)	1.71	1.72 (0.20-14.75)	0.96
►	Symptomatic status	1.0 (1)	1 (5)	0.95	0.95 (0.11-8.23)	0.99
	Use of protection system	1.1 (6)	0			0.91
	Use of proximal protection	0	1.6 (6)	0	0	0.52
	Pre-dilatation	1.0 (2)	1.1 (4)	0.94	0.93 (0.17-5.15)	0.99
	Roadsaver stent	0	1.9 (6)	0	0	0.17
	Post-dilatation	0.9 (5)	2.9 (1)	0.32	0.31 (0.03-2.80)	0.75

Patient-level meta-analysis 556 patients / 4 trials (both symptomatic and asymptomatic) Dual-layer stents 1-year data

ESC Congress Paris 2019

Results at one year according to Stent Platform

Stabile et al. 2019 (at review)

Patient-level meta-analysis 556 patients / 4 trials (both symptomatic and asymptomatic) Dual-layer stents 1-year data

ESC Congress Paris 2019

Cumulative results at one year according to Stent Platform

Stabile et al. 2019 (at review)

Comparative analysis of the carotid stent data available in public domains by 07.2019 (journal publications plus congress presentations published on-line)

Cumulative Incidence of Death/Stroke/MI @ 30 days plus 1-year ipislateral stroke rate

Combined data from different studies/populations; confounders may contribute => compare with caution !

30d

1y

Cumulative Incidence of Death/Stroke/MI @ 30 days *plus* 1-year ipislateral stroke rate

Combined data from different studies/populations; confounders may contribute => compare with caution !

Comparative analysis of the carotid stent data available in public domains (journal publications plus congress presentations published on-line)

Cumulative Incidence of Death/Stroke/MI @ 30 days plus 1-year ipislateral stroke rate

Combined data from different studies/populations confounders may contribute => compare with caution

Determining the type of intervention...

Endo: If one can safely treat high-risk patients/lesions why not average-risk ones?

-(

ESC Congress

For <u>your</u> 70 yo Mother/Father, with a clearly increasing asymptomatic CS carotid stenosis <u>You</u> suggest (NB. you have access to a skilled operator):

A. OMT + Surgery (CEA)

B. OMT + Neuroprotected CAS with plaque sequestration

C. OMT + Wait for symptoms of cerebral damage (TIA or

CONCLUSIONS

ESC Congress

- The prevalence of asymptomatic carotid stenosis is similar to that of Atrial Fibrillation
- "Asymptomatic" carotid stenosis is <u>not</u> (at least: <u>not</u> universally) a benign disease
- Most strokes do <u>not</u> give a warning
- There is no evidence that Optimized Medical Therapy is sufficient to protect against CSrelated stroke (it may *reduce* or *delay* – but not abolish - the stroke risk)
- Limiting interventional treatment (CEA or CAS) to symptomatic patients is for those with a stroke – treating TOO LATE
- Novel endovascular techniologies (proximal neuroprotection, micro-net covered stents) allow safe endovascular plaque sequestration and may constitute a game-changer

Stroke Risk Stratification tools - 2019

AFib

Carotid Stenosis

- (

Stroke Risk Stratification tools - 2019

CHADS₂ Calculator for Atrial Fibrillation

Evaluates ischemic stroke risk in patients with atrial fibrillation

Criteria		Poss. Point
Congestive heart failure Signs/symptoms of heart failure confirmed with objective evidence of cardiac dysfunction	Yes No	+1
Hypertension Resting BP > 140/90 mmHg on at least 2 occasions <u>or</u> current antihypertensive pharmacologic treatment	Yes No	+1
Age 75 years or older	Yes No	+2
Diabetes mellitus Fasting glucose > 125 mg/dL or treatment with oral hypoglycemic agent and/or insulin	Yes No	+1
Stroke, TIA, or TE Includes any history of cerebral ischemia	Yes No	+2
Vascular disease Prior MI, peripheral arterial disease, or aortic plaque	Yes No	+1
Age 65 to 74 years	Yes No	+1
Sex Category (female) Female gender confers higher risk	Yes No	+1

ESC Congress Paris 2019

Results:		
Total Criteria P	oint Count:	0
Reset Form		
Stroke Risk per Interpretation	100 Person	Years/Warfarin
0 Points:	0.25 ON Rx;	0.49 NO Rx
1 Point:	0.72 ON Rx;	1.52 NO Rx
2 Points:	1.27 ON Rx;	2.50 No Rx
3 Points:	2.20 ON Rx;	5.27 NO Rx
4 Points:	2.35 ON Rx;	6.02 NO Rx

AFib

The ABC (age, bio-

markers, clinical his-

tory)-stroke risk score²

- NT-proBNP and cTn-hs
- Prior stroke/TIA

Carotid Stenosis

Stroke Risk Stratification tools - 2019

CHADS₂ Calculator for Atrial Fibrillation

Evaluates ischemic stroke risk in patients with atrial fibrillation

Criteria		Poss. Point	Beaulter		
Congestive heart failure Signs/symptoms of heart failure confirmed with objective evidence of cardiac dysfunction	Yes No	+1	Results: Total Criteria Point Count: 0		
Hypertension Resting BP > 140/90 mmHg on at least 2 occasions <u>or</u> current antihypertensive pharmacologic treatment	Yes No	+1	Reset Form		
Age 75 years or older	Yes No	+2	Stroke Risk per 100 Person Years/Warfarin Rx		
Diabetes mellitus Fasting glucose > 125 mg/dL or treatment with oral hypoglycemic agent and/or insulin	Yes No	+1	0 Points: 0.25 ON Rx; 0.49 NO Rx		
Stroke, TIA, or TE Includes any history of cerebral ischemia	Yes No	+2	1 Point: 0.72 ON Rx; 1.52 NO Rx		
V			2 Points: 1.27 ON Rx; 2.50 No Rx		
Vascular disease Prior MI, peripheral arterial disease, or aortic plaque	Yes No	+1	3 Points: 2.20 ON Rx; 5.27 NO Rx		
Age 65 to 74 years	Yes No	+1	4 Points: 2.35 ON Rx; 6.02 NO Rx		
Sex Category (female) Female gender confers higher risk	Yes No	+1	5-6 Points: 4.60 ON Rx; 6.88 NO Rx		

ESC Congress **Paris 2019**

markers, clinical his-

tory)-stroke risk score²

- Age
- NT-proBNP and cTn-hs

AFib

Prior stroke/TIA

Carotid Stenosis

Take-home messages

- CS-related Strokes should be PREVENTED rather than experienced
- IMPLEMENT the evidence we have today
- STRIVE for improved risk-stratification tools in carotid stenosis
- All-comer patient registries will guide real-life decision-making
- $\downarrow \downarrow$ Invasiveness of Intervention

Double-Layer Carotid Stents: From the Clinical Need, through a Stent-in-Stent Strategy, to Effective Plaque Isolation... the Journey Toward Safe Carotid **Revascularization Using the Endovascular** Route

Iournal of Endovascular Therapy 2019, Vol. 26(4) 572-577 © The Author(s) 2019 Article reuse guidelines: sagepub.com/journals-permissions DOI: 10.1177/1526602819861546 www.jevt.org (\$)SAGE

Piotr Musiałek, MD, DPhil¹ and Gary S. Roubin, MD, PhD²

Keywords

carotid artery stenosis, carotid artery stenting, carotid endarterectomy, closed-cell stent, MicroNET, open-cell stent, plaque protrusion, stent-graft, restenosis, double-layer stent, unstable plaque

LICA

Both surgical and endovascular routes of carotid revascularization are associated with the risk of symptomatic and asymptomatic cerebral embolism.1-3 Optimized pharmacotherapy, the mainstay of atherosclerosis management, can reduce or delay but not abolish the risk of stroke from atherosclerotic carotid artery stenosis.47 Interventional elimination or sequestration of the thromboembolic carotid plaque⁸⁻¹⁰ remains an important consideration in a significant proportion of patients if carotid stenosis-related strokes are to be prevented rather than experienced. This is the focus

and the stent free-cell area also affect the risk of embolism after stent placement. Thus, while optimized neuroprotection during CAS may minimize intraprocedural cerebral embolism,^{18-20,23,24} the problem of early or delayed postprocedural embolism remains.3,25-27 With optimal patient selection technique and antiplatelet therapy, post-stent embolic phenomena are largely related to intrastent plaque prolapse, balloon trauma, and subsequent embolization. This may occur after the period of intraprocedural cerebral protection using flow reversal techniques and/or filters.

Endovasc. reconstruction with Plaque sequestration

LEC/ Thr 11 2 67 LCCA

LICA

ESC Congress Paris 2019

Stent-in-stent technique for unstable plaque (G. Roubin, J Vitek 1999)