

PARADIGM-EXTEND: Prospective Academic Trial of CGuard™ MicroNET-Covered Self-Expandable Stent System:

Cumulative 3-Year Clinical and Duplex Ultrasound Evidence for Safety, Efficacy and Durability of Stroke Prevention

Piotr Musialek, MD DPhil on behalf of the PARADIGM-EXTEND Study Team

Jagiellonian University Dept. of Cardiac & Vascular Diseases John Paul II Hospital, Krakow, Poland

Prospective evaluation of All-comer peRcutaneous cArotiD revascularization in symptomatic and Increased-stroke-risk asymptomatic carotid artery stenosis using CGuard[™] Micronet-covered embolic prevention stent system – clinical trial extension

Disclosure

Speaker name: Piotr Musialek I have the following potential conflicts of interest to report:

🗹 Consulting

- Employment in industry
- Stockholder of a healthcare company
- Owner of a healthcare company

□ Other(s)

I do not have any potential conflict of interest

Carotid Stenosis Decision-making

PHARMACOTHERAPY + INTERVENTION

ISOLATED PHARMACOTHERAPY

Carotid Stenosis Decision-making

PHARMACOTHERAPY + INTERVENTION

ISOLATED PHARMACOTHERAPY

Conventional Carotid Stents Do Have A Problem

Conventional Carotid Stents Do Have A Problem

2019

CEA excludes the plaque

In CAS, the <u>stent should</u> <u>exclude the plaque too</u>

CEA excludes the plaque

In CAS, the <u>stent should</u> <u>exclude the plaque too</u>

CGuard[™] embolic prevention system

MicroNet mesh preventing prolapse

Tomyuki Umemoto et al. *EuroIntervention* 2017

rox 1000 um

F

Musialek & Stabile *EuroIntervention* 2017

lumen

wall

Tomyuki Umemoto et al. *EuroIntervention* 2017

F

2019

Musialek & Stabile *EuroIntervention* 2017

JACC: CARDIOVASCULAR INTERVENTIONS © 2015 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION PUBLISHED BY ELSEVIER INC.

A Prospective, Multicenter Study of a Novel Mesh-Covered Carotid Stent

The CGuard CARENET Trial

(Carotid Embolic Protection Using MicroNet)

Joachim Schofer, MD,* Piotr Musiałek, MD, DPHIL,† Klaudija Bijuklic, MD,* Ralf Kolvenbach, MD,‡ Mariusz Trystula, MD,† Zbigniew Siudak, MD,†§ Horst Sievert, MD||

ABSTRACT At B/L, 24-48h after CAS, and at 30 days

OBJECTIVES This study sought to evaluate the feasibility of the CGuard Carotid Embolic Protective Stent system—a novel thin strut nitinol stent combined with a polyethylene terephthalate mesh covering designed to prevent embolic events from the target lesion in the treatment of carotid artery lesions in consecutive patients suitable for carotid artery stenting.

BACKGROUND The risk of cerebral embolization persists throughout the carotid artery stenting procedure and remains during the stent healing period.

METHODS A total of 30 consecutive patients (age 71.6 \pm 7.6 years, 63% male) meeting the conventional carotid artery stenting inclusion criteria were enrolled in 4 centers in Germany and Poland.

Filter-protected CAS procedures CARENET vs PROFI: DW-MRI analysis

Filter-protected CAS procedures CARENET vs PROFI: DW-MRI analysis

n=27

n=31

* see patient fluxogram Bijuklic et al. *JACC*, 2012;59

J. Schofer, P. Musialek et al. *JACC Intv* 2015;8:1229-34 Bijuklic et al. (manuscript in preparation)

CARENET DW-MRI analysis^{*}

All but one peri-procedural ipsilateral lesions

RESOLVED

DW-MRI analysis @ 30 days*		
Incidence of new ipsilateral lesions	1	
Average lesion volume (cm ³)	0.08 ± 0.00	
Permanent lesions at 30 days	1	

*External Core Lab analysis (US)

J. Schofer, P. Musialek et al. JACC Intv 2015;8:1229-34

=> <u>near-elimination of post-procedural embolism</u>!

Novel PARADIGM in carotid revascularisation: Prospective evaluation of All-comer peRcutaneous cArotiD revascularisation in symptomatic and Increased-risk asymptomatic carotid artery stenosis using CGuard[™] Micronet-covered embolic prevention stent system

Piotr Musialek^{1*}, MD, DPhil; Adam Mazurek¹, MD; Mariusz Trystula², MD, PhD;
Anna Borratynska³, MD, PhD; Agata Lesniak-Sobelga¹, MD, PhD; Malgorzata Urbanczyk⁴, MD;
R. Pawel Banys⁴, MSc; Andrzej Brzychczy², MD, PhD; Wojciech Zajdel⁵, MD, PhD;
Lukasz Partyka⁶, MD, PhD; Krzysztof Zmudka⁵, MD, PhD; Piotr Podolec¹, MD, PhD

1. Jagiellonian University Department of Cardiac & Vascular Diseases, John Paul II Hospital, Krakow, Poland; 2. Department of Vascular Surgery, John Paul II Hospital, Krakow, Poland; 3. Neurology Outpatient Department, John Paul II Hospital, Krakow, Poland; 4. Department of Radiology, John Paul II Hospital, Krakow, Poland; 5. Jagiellonian University Department of Interventional Cardiology, John Paul II Hospital, Krakow, Poland; 6. KCRI, Krakow, Poland

Objective

 to evaluate feasibility and outcome of <u>routine</u> anti-embolic stent system use in <u>unselected</u>, <u>consecutive</u> patients referred for carotid revascularization (<u>'all-comer</u>' study)

P. Musialek, A. Mazurek et al. EuroIntervention 2016;12:e658-70 TCT 2016 Featured Research (PARADIGM design and 30-day outcome data) <u>P</u>rospective evaluation of <u>A</u>ll-comer pe<u>R</u>cutaneous c<u>A</u>roti<u>D</u> revascularization in symptomatic and <u>I</u>ncreased-risk asymptomatic carotid artery stenosis using the C<u>G</u>uard[™] <u>M</u>icronet-covered embolic prevention stent system

The PARADIGM Study

TCT 2016 Featured Research

2016

TCT 2016 Featured Research

PARADIGM Methods (cont'd):

- <u>ASYMPTOMATIC</u> patients treated interventionally only if at /stroke risk
- established lesion-level increased-risk crieria used:
 - thrombus-containing
 - documented progressive
 - irregular and/or ulcerated
 - contralateral ICA occlusion/stroke
 - asymptomatic ipsilateral brain infarct

AbuRahma A et al. *Ann Surg.* 2003;238:551-562. Ballotta E et al. *J Vasc Surg* 2007;45:516-522. Kakkos SK et al. (ACSRS) *J Vasc Surg.* 2009;49:902-909. Lovett JK et al. *Circulation* 2004;110:2190-97 Nicolaides AN et al. *J Vasc Surg* 2010;52:1486-96. Taussky P et al. *Neurosurg Focus* 2011;31:6-17.

PARADIGM – Extend continues as an ALL-Comer Study

- 251 patients / 263 arteries NeuroVascular Team decision-making on revascularization
- Age 51-87 years, <u>57.1% symptomatic</u>
- Crossed the trial first follow-up window (30d)
- 100% CGuardEPS use, Proximal/distal EPD ≈ 50% : 50%
- Angiographic diameter stenosis was reduced from 83±9% to only 6.7±5% (p<0.001, 'CEA-like' effect of CAS)

PARADIGM – Extend

251 patients / 263 arteries

<u>Peri-procedural outcome</u>

0 death/major stroke – 0% 1 minor stroke – 0.4% 1 MI (type2) – 0.4%

- By 30 days
 - **1 haemorrhagic transformation** of prior ischaemic cerebral infarct, leading to **death 0.4%**

PARADIGM – Extend

2019 L L L C	PARADIGM – Extend		
	1-12 mo	12-24 mo	24-36 mo
	n=251	n=185	n=93
 ipsilateral stroke 	0	0	0
 any stroke 	0	1 (cerebellal)	1 (brain stem)

2019 L L N C	PARAD	Extend	
	1-12 mo	12-24 mo	24-36 mo
	n=251	n=185	n=93
 ipsilateral stroke 	0	0	0
 any stroke 	0	1 (cerebellal)	1 (brain stem)
 stroke-related death 	0	0	0

2019 L L V C	PARADIGM – Extend		
	1-12 mo	12-24 mo	24-36 mo
	n=251	n=185	n=93
ipsilateral stroke	0	0	0
any stroke	0	1 (cerebellal)	1 (brain stem)
stroke-related death	0	0	0
MI or other non-cerebral VA	0	3	2

2019 L L V C	PARAD	PARADIGM – Extend		
	1-12 mo	12-24 mo	24-36 mo	
	n=251	n=185	n=93	
ipsilateral stroke	0	0	0	
any stroke	0	1 (cerebellal)	1 (brain stem)	
stroke-related death	0	0	0	
• MI or other non-cerebral VA	0	3	2	
 any death 	6 (CHF-2, Ca-2, PE-1, urosepsis -1)	5 (CHF-2, Ca-2, MI-1)	2 (Ca-1, MI-1)	

2019 L J N C	PARADIGM – Extend		
	1-12 mo	12-24 mo	24-36 mo
	n=251	n=185	n=93
 ipsilateral stroke 	0	0	0
 any stroke 	0	1 (cerebellal)	1 (brain stem)
 stroke-related death 	0	0	0
MI or other non-cerebral VA	0	3	2
• any death	6 (CHF-2, Ca-2, PE-1, urosepsis -1)	5 (CHF-2, Ca-2, MI-1)	2 (Ca-1, MI-1)
in-stent velocities	PSV 0.82 ±0.48 m/s EDV 0.22 ±0.13 m/s	PSV 0.73 ±0.31 m/s EDV 0.19 ±0.09 m/s	PSV 0.75 ±0.27 m/s EDV 0.18 ±0.06 m/s P Musialek @ LINC 2019

P Musialek @ LINC 2019

systematic

CEA-like effect of CAS

EuroIntervention 2016;12:e658-70

TCT 2016 Featured Research

The Outcome Difference

Between the MicroNet-Covered Stent

vs. Conventional Carotid Stent(s) driven by HIGH-RISK Plaques and Patients

B/L MRI scan

RICA high-grade highlythromboltic stenosis

Flow reversal time 7min 10sec Intolerance in the last 80sec (active aspiration still !! performed)

Final Result

2019

Patient A/S, discharged home, unremarkable follow-up

Normal stent image

ADDRESSING UNMET NEEDS IN OTHER VASCULAR BEDS

Thrombus-containing/high-embolic risk lesions in <u>iliacs</u> or subclavians

Thrombus-containing/high-embolic risk lesions in <u>iliacs</u> or subclavians

OPTIMAL procedural result

Normal 6mo follow-up

Thrombus-containing/high-embolic risk lesions in iliacs or <u>subclavians</u>

Thrombus-containing/high-embolic risk lesions in iliacs or subclavians

Procedural result

Normal 6mo follow-up

Thrombus-containing/high-embolic risk lesions in <u>iliacs</u> or subclavians

Procedural result

Thrombus-containing/high-embolic risk lesions in <u>iliacs</u> or subclavians

CGuard™

Normal Result @follow-up

Thrombus-containing/high-embolic risk lesions in <u>iliacs</u> or subclavians and

Procedural acute outcome

Thrombus-containing/high-embolic risk lesions in <u>iliacs</u> or subclavians

OPTIMAL 6mo

result

Pt ready for fem-fem (NB. several prior attempts to recanalize LCIA had failed)

Large-diameter SVG disease problem

AK, 58y, NSTE Acute Myocardial Infarction

SVG RD 7.5 mm (!)

Large-diameter SVG disease problem

AK, 58y, NSTE Acute Myocardial Infarction

SVG ref diameter 7.5 mm (!)

Large-diameter SVG disease / NSTE-acute MI

post PCI/direct stenting with overlapping MicroNet–covered CGuard[™] stents

NB. absence of distal embolizm, normal OM flow, no further troponin rise

OPTIMAL acute result

Large-diameter SVG disease treated with CGuards (angio @3mo)

Large-diameter SVG disease treated with CGuards (CT-angio @6mo)

NOTE ostial placement precision feasibility

^{ity} OPTIMAL result @ 6mo

(V) Higly calcific disease (note: adequate radial force need)

2019

(V) Higly calcific disease (note adequate radial force need)

Acute Procedural Result

(V) Higly calcific disease (note: adequate radial force provided)

OPTIMAL result @ 6mo

CGuard™

MoMa, IVUS

Non-Healing Dissection with recurrent symptoms

Normal 12 mo Follow-up Result

Н

Ostial CCA lesions

(note adequate radial force and placement percision need)

Lady 68 yo, retinal TIAs followed by <u>retinal stroke</u> while on OMT (mother to cathlab nurse)

Ostial CCA lesions (note adequate radial force and placement percision)

(movie)

Ostial CCA lesions

(note adequate radial force and placement percision)

OPTIMAL angiographic + clinical + duplex result @ 12mo

Ao

Ao

Acknowledgements

R. Paweł Banyś Anna Borratyńska Mateusz Brózda Andrzej Brzychczy Władysław Dąbrowski Natalia Dłużniewska Tomasz Drążkiewicz **Urszula Gancarczyk** Paulina Judziało Marek Kazibudzki Klaudia Knap Artur Kozanecki Agata Leśniak-Sobelga Adam Mazurek **Marcin Misztal** Zbigniew Moczulski **Piotr Paluszek** Łukasz Partyka **Piotr Pieniążek Piotr Podolec** Grażyna Stankiewicz Tomasz Tomaszewski Mariusz Trystuła Małgorzata Urbańczyk Piotr Wilkołek Agnieszka Zwolińska

36-month data

PARADIGM @ 36 months Favourable Clinical Outcome

NO device-related adverse events NO procedure-related events

s u s t a i n e d stroke prevention

Endovascular Solution for All-Comers

Endovascular Reconstruction of the Carotid Bifurcation Prevention of embolism, High radial force, Conformability

P. Musialek @ VEITH 2018

This concept has been desired. And it works.

This is the future of Carotid Artery Stenting

This concept has been desired. And it works.

This is the future for the future fo

man 3D OCT, symptomatic lesion

2019 L J N C

CGuard™ EPS

One swallow does not a summer make but many swallows do: accumulating clinical evidence for nearly-eliminated peri-procedural and 30-day complications with meshcovered stents transforms the carotid revascularisation field

Piotr Musiałek¹, L. Nelson Hopkins², Adnan H. Siddiqui²

¹Department of Cardiac and Vascular Diseases, Jagiellonian University, School of Medicine, John Paul II Hospital, Krakow, Poland ²Departments of Neurosurgery and Radiology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Jacobs Institute, Gates Vascular Institute Kaleida Health, Buffalo, New York, USA

> Adv Interv Cardiol 2017; 13, 2 (48): 95–106 DOI: https://doi.org/10.5114/pwki.2017.69012

Abstract

Atherosclerotic carotid artery stenosis (CS) continues to be a common cause of acute ischaemic stroke. Optimised medical therapy (OMT), the first-line treatment modality in CS, may reduce or delay – but it does not abolish – CS-related strokes. As per current AHA/ASA and ESC/ESVS/ESO guidelines, carotid artery stenting (CAS) is a less-invasive alternative to carotid endarterectomy (CEA) for CS revascularisation in primary and secondary stroke prevention.

Ten-year follow-up from the CREST trial in patients with symptomatic and asymptomatic CS confirmed equipoise of CAS and CEA in the primary endpoint. Nevertheless CAS – using a widely open-cell, first-generation stent and first-generation (distal/filter) neuroprotection – has been criticised for its relative excess of (mostly minor) strokes by 30 days, a significant proportion of which were post-procedural.

Atherosclerotic plaque protrusion through conventional carotid stent struts, confirmed on intravascular imaging, has been implicated as a leading mechanism of the relative excess of strokes with CAS vs. CEA, including delayed strokes with CAS. Different designs of mesh-covered carotid stents have been developed to prevent plaque prolapse. Several multi-centre/multi-specialty clinical studies with CGurad MicroNet-Covered Embolic Prevention Stent System (EPS) and RoadSaver/Casper were recently published and included routine DW-MRI cerebral imaging peri-procedurally and at 30 days (CGuard EPS).

Data from more than 550 patients in mesh-covered carotid stent clinical studies to-date show an overall 30-day complication rate of -1% with near-elimination of post-procedural events. While more (and long-term) evidence is still anticipated, these results – taken together with optimised intra-procedural neuroprotection in CAS (increased use of proximal systems including trans-carotid dynamic flow reversal) and the positive 12-month mesh-covered stent data reports in 2017 – are transforming the carotid revascularisation field today.

Establishing effective algorithms to identify the asymptomatic subjects at stroke risk despite OMT, and large-scale studies with mesh-covered stents including long-term clinical and duplex ultrasound outcomes, are the next major goals.

Key words: carotid artery stenting, mesh, stroke, endarterectomy, neuroprotection.

CGuard[™] OCT

PARADIGM-EXTEND: Prospective Academic Trial of CGuard™ MicroNET-Covered Self-Expandable Stent System:

Cumulative 3-Year Clinical and Duplex Ultrasound Evidence for Safety, Efficacy and Durability of Stroke Prevention

Piotr Musialek, MD DPhil on behalf of the PARADIGM-EXTEND Study Team

Jagiellonian University Dept. of Cardiac & Vascular Diseases John Paul II Hospital, Krakow, Poland

Prospective evaluation of All-comer peRcutaneous cArotiD revascularization in symptomatic and Increased-stroke-risk asymptomatic carotid artery stenosis using CGuard[™] Micronet-covered embolic prevention stent system – clinical trial extension