

<u>P</u>rospective evaluation of <u>A</u>ll-comer pe<u>R</u>cutaneous c<u>A</u>roti<u>D</u> revascularization <u>I</u>n symptomatic and increased-risk asymptomatic carotid artery stenosis using C<u>G</u>uard[™] <u>M</u>icronet-covered embolic prevention stent system: **The PARADIGM Study**

P. MUSIALEK¹, A. MAZUREK¹, M. TRYSTULA², A. BORRATYNSKA³, M. URBANCZYK³, A. LESNIAK-SOBELGA¹, P. BANYS³, A. BRZYCHCZY², L. PARTYKA⁴, K. ZMUDKA⁵, P. PODOLEC¹

 (1) Dept Cardiac and Vascular Diseases, Jagiellonian University & John Paul II Hospital, (2) Dept Vascular Surgery, John Paul II Hospital; (3) John Paul II Hospital, Krakow; (4) Krakow Cardiovascular Research Institute (KCRI);
(5) Dept Interventional Cardiology, Jagiellonian University & John Paul II Hospital, Krakow, POLAND

The world-leading Course n Interventional Medicine

<u>P</u>rospective evaluation of <u>A</u>ll-comer pe<u>R</u>cutaneous c<u>A</u>roti<u>D</u> revascularization <u>I</u>n symptomatic and increased-risk asymptomatic carotid artery stenosis using C<u>G</u>uard[™] <u>M</u>icronet -covered <u>embolic prevention</u> stent system: **The PARADIGM Study**

P. MUSIALEK¹, A. MAZUREK¹, M. TRYSTULA², A. BORRATYNSKA³, M. URBANCZYK³, A. LESNIAK-SOBELGA¹, P. BANYS³, A. BRZYCHCZY², L. PARTYKA⁴, K. ZMUDKA⁵, P. PODOLEC¹

 (1) Dept Cardiac and Vascular Diseases, Jagiellonian University & John Paul II Hospital, (2) Dept Vascular Surgery, John Paul II Hospital; (3) John Paul II Hospital, Krakow; (4) Krakow Cardiovascular Research Institute (KCRI);
(5) Dept Interventional Cardiology, Jagiellonian University & John Paul II Hospital, Krakow, POLAND

The world-leading Course n Interventional Medicine

<u>P</u>rospective evaluation of <u>A</u>ll-comer pe<u>R</u>cutaneous c<u>A</u>roti<u>D</u> revascularization <u>I</u>n symptomatic and increased-risk asymptomatic carotid artery stenosis using C<u>G</u>uard[™] <u>M</u>icronet -covered <u>embolic prevention</u> stent system: **The PARADIGM Study**

P. MUSIALEK¹, A. MAZUREK¹, M. TRYSTULA², A. BORRATYNSKA³, M. URBANCZYK³, A. LESNIAK-SOBELGA¹, P. BANYS³, A. BRZYCHCZY², L. PARTYKA⁴, K. ZMUDKA⁵, P. PODOLEC¹

 (1) Dept Cardiac and Vascular Diseases, Jagiellonian University & John Paul II Hospital, (2) Dept Vascular Surgery, John Paul II Hospital; (3) John Paul II Hospital, Krakow; (4) Krakow Cardiovascular Research Institute (KCRI);
(5) Dept Interventional Cardiology, Jagiellonian University & John Paul II Hospital, Krakow, POLAND

The world-leading Course n Interventional Medicine

<u>P</u>rospective evaluation of <u>A</u>ll-comer pe<u>R</u>cutaneous c<u>A</u>roti<u>D</u> revascularization <u>I</u>n symptomatic and increased-risk asymptomatic carotid artery stenosis using C<u>G</u>uard[™] <u>M</u>icronet -covered embolic prevention stent system: The <u>PARADIGM</u> Study

P. MUSIALEK¹, A. MAZUREK¹, M. TRYSTULA², A. BORRATYNSKA³, M. URBANCZYK³, A. LESNIAK-SOBELGA¹, P. BANYS³, A. BRZYCHCZY², L. PARTYKA⁴, K. ZMUDKA⁵, P. PODOLEC¹

 (1) Dept Cardiac and Vascular Diseases, Jagiellonian University & John Paul II Hospital, (2) Dept Vascular Surgery, John Paul II Hospital; (3) John Paul II Hospital, Krakow; (4) Krakow Cardiovascular Research Institute (KCRI);
(5) Dept Interventional Cardiology, Jagiellonian University & John Paul II Hospital, Krakow, POLAND

The world-leading Course n Interventional Medicine

Potential conflicts of interest

Speaker's name: Piotr Musialek

☑ I have the following potential conflicts of interest to report: Consulting / Research Support / Speaker Bureau

ABBOTT VASCULAR Balton Ltd InspireMD MEDTRONIC

NB. Research in this presentation is **not** industry-funded

CAS (and CEA) are –and will remain– emboli-generating procedures

Figure 1. Microembolic profile during unprotected CAS. The mean MES counts during various phases of the procedure are displayed. Circulation. 2001;104:1999-2002

System on Stenting **Effect of the Distal-Balloon Protection Microembolization During Carotid**

euro The world-leading Course P in Interventional Medicine

Does Free Cell Area Influence the Outcome in Carotid Artery Stenting?

M. Bosiers,^{1*} G. de Donato,² K. Deloose,¹ J. Verbist,³ P. Peeters,³ F. Castriota,⁴ A. Cremonesi⁴ and C. Setacci⁴

Overview of event rates related to the different stents

n = 3179 consecutive CAS patients

	Total population			Symptoma	Symptomatic population			Asymptomatic population		
	Patients	All events	Post-procedural events	Patients	All events	Post-procedural events	Patients	All events	Post-procedural events	
Stent name										
X-act		1.9%	1.9%		2.2%	2.2%		1.7%	1.7%	
Nexstent		3.3%	3.3%		0.0%	0.0%		4.2%	4.2%	
Wallstent		2.3%	1.2%	//~	2.3%	1.2%		2.3%	1.2%	
Precise		4.1%	3.1%		6.3%	4.9%		2.0%	1.3%	
Protégé		3.0%	3.0%	-	6.7%	6.7%		1.4%	1.4%	
Acculink		4.2%	3.7%	S neuro	7.7%	7.1%		1.7%	1.2%	
Exponent		11.8%	5.9%	Sincuro	9.1%	9.1%		13.0%	4.3%	
Total	3179	2.83%	1.9% J e	vents	3.6%	2.73%	1862	2.25%	1.3%	
			(st	roke, TIA	۹)					
			are	POST-p	roced	ural				

Eur J Vasc Endovasc Surg Vol 33, February 2007

FREE CELL AREA drives CAS neurologic adverse events (and majority are those during stent healing !) Free cell area Total population Symptomatic population A11 A11 Post-Postevents procedural procedural events events events <2.5 vs [2.5, 5] 1.001.001.001.00<2.5 vs [5, 7.5] 0.0540.0480.0240.072<2.5 vs >7.5 0.0006 $2.8 \ 10^{-6}$ 0.270.006

Eur J Vasc Endovasc Surg Vol 33, February 2007

PCR CAS using conventional carotid stents in high-risk lesions

Conventional Carotid Stent

Plaque protrusion may lead to early and late distal embolization

J. Schofer, P. Musialek et al. TCT 2014

current best-in-class Hybrid stent

current best-in-class Closed-cell stent

EuroPCR 2015 19th-22nd May, 2015 - Paris

<u>Post-procedural</u> Embolization with conventional carotid stents DW-MRI post CAS

Mean total lesion area

PCR CAS using conventional carotid stents in high-risk lesions

Conventional Carotid Stent

Plaque protrusion may lead to early and late distal embolization

J. Schofer, P. Musialek et al. TCT 2014

CGuard [™] embolic prevention system

P Musialek @ ePCR 2015

CGuard[™]– Carotid Embolic Prevention System

System specifications					
Stent type	Nitinol – self expanding				
Micronet aperture size	150-180 μm				
Guidewire	0.014"				
Sizes - Diameter - Length	6-10mm 20-60mm				

CE Mark – March 2014

EuroPCR 2015 19th-22nd May, 2015 - Paris

Objective

 to evaluate feasibility and outcome of <u>routine</u> anti-embolic stent system use in <u>unselected</u>, <u>consecutive</u> patients referred for carotid revascularization ('all-comer' study)

PARADIGM

Methods:

- academic cardio-vascular centre
- investigator-initiated study
- not industry-funded
- all-comer patient inclusion (six month referral sample)
- all referrals tracked
- routine consultation and management pathways
- qualitative and quantitative lesion & stent evaluation
- investigator-independent neurological and angiographic evaluation, and external study data verification

- EPD use mandatory; EPD selection according to the 'Tailored CAS' algorithm^{*}
- Liberal postdilatation accepted in order to maximize potential for 'endovascular full reconstruction' (minimizing residual stenosis)
 - NB. 1. DWI evidence of effective MicroNet prevention against cerebral embolization (CARENET/PROFI)
 - 2. Residual stenosis after CAS as independent predictor of in-stent restenosis

Van Laanen J et al. *J Cardiovasc Surg*Cosottini M et al. *Stroke Res*Musialek P et al. *J Endovasc Ther*Wasser K et al. *J Neurol*

* Pieniazek P, Musialek P et al. *J Endovasc Ther* 2008;15:249-62. Cremonesi A et al. *EuroInervention* 2009;5:589-98. Pieniazek P, Musialek P et al. *J Endovasc Ther* 2009;16:744-51.

Filter-protected CAS procedures CARENET vs PROFI: DW-MRI analysis

J. Schofer, P. Musialek et al. *JACC Intv* 2015 (in press) K. Bijuklic et al. *JACC*, 2012;59:1383-9.

CGuard [™] embolic prevention system

P Musialek @ ePCR 2015

Filter-protected CAS procedures CARENET vs PROFI: DW-MRI analysis

J. Schofer, P. Musialek et al. *JACC Intv* 2015 (in press) K. Bijuklic et al. *JACC*, 2012;59:1383-9.

PARADIGM

- 24-48h

- 30 days

up to 5y

12 months

Endpoints:

- feasibility of endovascular Tx in unselected referrals using the study device in otherwise routine practice
- device success (able to deliver + implant + <30% DS)
- procedure success (device success w/o clinical compl.) (external neurologist, external non-invasive cardiologist)
- clinical efficacy: MACNE (death/stroke/MI)
- in-stent velocities (Duplex)

PARADIGM

- <u>ASYMPTOMATIC</u> patients treated interventionally only if at formationally
- established lesion-level increased-risk crieria used:
 - thrombus-containing
 - tight, near-occlusive
 - documented progressive
 - irregular and/or ulcerated
 - contralteral ICA occlusion/stroke
 - asymptomatic ipsilateral brain infarct

AbuRahma A et al. *Ann Surg.* 2003;238:551-562. Ballotta E et al. *J Vasc Surg* 2007;45:516-522. Kakkos SK et al. (ACSRS) *J Vasc Surg.* 2009;49:902-909. Lovett JK et al. *Circulation* 2004;110:2190-97 Nicolaides AN et al. *J Vasc Surg* 2010;52:1486-96. Taussky P et al. *Neurosurg Focus* 2011;31:6-17.

Methods (cont'd)

external study data verification

external angiographic analysis

external statistical analysis

Study Flow Chart (1)

97 carotid stenosis patient **referrals*** (external >> internal)

Gupta K et al. A multispecialty consensus-based approach to carotid revascularization. *J Invasive Cardiol*. 2014;26:123-7. Tomai F et al. Carotid artery revascularization selected by consensus of a cardiovascular team. *EuroIntervention* 2014;9:1294-300. Kole MK et al. A multidisciplinary carotid revascularization board. *Surg Neurol Int.* 2012;3:117.

euro

Krakow, Poland; 10.2014–03.2015

in Interventional Medicine

Study Flow Chart (2)

73 Patients for carotid revascularization

- $n=1 eGRF 14 \Rightarrow no contrast$
- n=1 extreme access tortuousity
- n=1 severe aortic valve disease + calcific LICA (AVR + CEA)
- n=1 floating thrombus in CCA
- n=1 ICA diameter <2.0 mm
 - + contralat. occlusion

Study Flow Chart (2)

73 Patients for carotid revascularization

Clinical characteristics of study patients (n=68)

age, mean±SD (min–max)	69 ±7 (55–83)		
male, % (n)	66% (45)		
symptomatic, % (n) symptomatic ≤ 14 days, % (n) acutely symptomatic (emergent CAS) , % (n)	53% (36) 28% (19) 9% (6)		
index lesion (CAS) , % (n) RICA LICA RICA+LICA	52% (35) 44% (30) 4% (3)		
CAD, % (n)	65% (44)		
h/of MI, % (n)	27% (18)		
CABG or PCI in the past, % (n)	38% (26)		
PCI as bridge to CAS, % (n)	16% (11)		
AFib (h/o or chronic), % (n)	6% (4)		
diabetes, % (n)	35% (24)		
h/o neck or chest radiotherapy, % (n)	4% (3)		

PARADIGM: Results (1)

- Percutaneous treatment 100% using the intended MicroNet-covered embolic prevention stent system CGuard (ie, no other stents used during the study period)
- 100% Device success Procedure success 100% Transient Dopamine infusion **19%** (n=14) Debris in EPD **18%** (n=13) Access site complications **0%** (n=0) Vascular plug closure 45% (n=32) The world-leading Course

Interventional Medicine

PARADIGM: Results (2)

Index	lesion qua	litative c	haracteristics	(n=71 lesions)

All (n=71)	Symptomatic (n=37)	Asymptomatic (n=34)	р
15% (11)	24% (9)	6% (2)	0.025
21% (15)	30% (11)	12% (4)	0.084
27% (19)	11% (4)	44% (15)	0.003
41% (29)	46% (17)	35% (12)	0.470
72% (51)	65% (24)	79% (27)	0.197
17% (12)	22% (8)	35% (12)	0.291
23% (16)	14% (5)	35% (12)	0.050
N/A	N/A	32% (11)	N/A
	15% (11) 21% (15) 27% (19) 41% (29) 72% (51) 17% (12) 23% (16)	15% (11) 24% (9) 21% (15) 30% (11) 27% (19) 11% (4) 41% (29) 46% (17) 72% (51) 65% (24) 17% (12) 22% (8) 23% (16) 14% (5)	15% (11)24% (9)6% (2)21% (15)30% (11)12% (4)27% (19)11% (4)44% (15)41% (29)46% (17)35% (12)72% (51)65% (24)79% (27)17% (12)22% (8)35% (12)23% (16)14% (5)35% (12)

* veriified imaging

Quantified

The world-leading Course in Interventional Medicine

euro

euro

2015

- ICA reference diameter
- Lesion length

4.99 ± **0.36mm** (from 4.27 to 6.02mm) **19.9** ± **5.8mm** (from 8.19 to 30.25mm)

PARADIGM: Results (3)

Index lesion quantitative characteristics (n=71 lesions)

	All (n=71 lesions)	Symptomatic n=37	Asymptomatic n=34	р		
Before CAS						
PSV, m/s	3.8 ± 1.3	3.7 ± 1.1	3.8 ± 1.5	0.862		
EDV, m/s	1.3 ± 0.7	1.4 ± 0.6	1.3 ± 0.8	0.687		
Diameter stenosis % (QA)	82 ± 9	79 ± 9	84 ± 9	0.021		
CAS						
EPD type Proximal* Distal**	35% (25) 65% (46)	44% (16) 56% (21)	26% (9) 74% (25)	0.092		
post-dilat balloon [#] peak pressure, mmHg	18.4 ± 3.4	17.5 ± 3.6	19.2 ± 2.9	0.037		
After CAS						
Stent length (QA) [§] Nominal 30mm (min-max) Nominal 40mm (min-max)	29.66 ± 0.30 (28.73-30.07) 39.73 ± 0.34 (38.88-40.22)	29.66 ± 0.28 (29.02-30.07) 39.69 ± 0.41 (38.88-40.22)	29.65 ± 0.32 (28.73-30.02) 39.77 ± 0.28 (39.14-40.04)	NA		
Residual diam. stenosis	7 ± 4%	5 ± 4%	7 ± 5%	0.257		
in-stent PSV, m/s	0.70 ± 0.28	0.66 ± 0.29	0.74 ± 0.27	0.266		
in-stent EDV, m/s	0.17 ± 0.07	0.17 ± 0.07	0.18 ± 0.07	0.457		

* Emboshield (n=7); FilterWire (n=14); Spider (n=25)

euro

2015

** Gore FlowReversal (n=4) or flow reversal with MoMa (n=21);

(NB. mean flow reversal time was 6min 48s, from 5min 18s to 11min 2s)

Ø 4.5mm (n=5); Ø 5.0mm (n=36); Ø 5.5mm (n=29); Ø 6.0mm (n=1); **§** 30mm in 51 lesions; 40mm in 18 lesions (2 other lesions required two stents each)

• Death/stroke/MI @ 48h 0%

• Death/stroke/MI @ 30d 0%

PCR 2015

euro

P

in Interventional Medicine

PARADIGM: Results (5)

• Death/stroke/MI @ 48h 0%

• Death/stroke/MI @ 30d 0%

PCR PARADIGM: Conclusions

- >90% all-comer carotid artery stenosis patients, including >50% symptomatic presentations, can be treated endovascularly using the MicroNet-covered embolic prevention stent system CGuard
- endovascular revascularization with routine use of the MicroNet--covered embolic prevention stent system CGuard in an unselected patient polulation is extremely safe
- use of the MicroNet-covered embolic prevention stent system enables 'endovascular reconstruction' of the diseased carotid artery across a wide lesion spectrum (from extremely tight and thrombotic to highly calcific) in absence of periprocedual clinical complications
- procedural safety of the MicroNet-covered embolic prevention system extends throughtout the stent healing period

CGuard 5 month follow-up

Piotr Musialek @ ePCR 2015

RCCA & RICA

LICA CGuard @ 5 months

CGuard: Endovascular Solution For All-comers

Endovascular Reconstruction of the Carotid Bifurcation

CAS (and CEA) are –and will remain– emboli-generating procedures

00

System

Effect of the Distal-Balloon Protection

mean MES counts during various phases of the procedure are displayed. Circulation. 2001;104:1999-2002

CGuard embolic prevention stent system

- Compatible with <u>ALL</u> EPD types V
- Deliverable in hard-access anatomies V
- Optimal visibility V
- Reliable, predictable, and extremely precise V
 placement
 No indication of foreshortening V
- Radial strength sufficient for v. hard lesions ${f V}$

CGuard embolic prevention stent system

 Full respect of the carotid bifurcation anatomy -> 'endovascular anatomic reconstruction'

 Optimal performance across all lesion subsets (including high calcium/thrombus/string)

'The most OPEN of open-cell stent designs' and 'The most CLOSED of the closed-cell designs'

PCR 2015 www.europcr.com

Novel PARADIGM in carotid revascularization

Prospective evaluation of All-comer peRcutaneous cArotiD revascularization In symptomatic and increased-risk asymptomatic carotid artery stenosis using CGuard[™] Mesh-covered embolic prevention stent system <u>Prospective evaluation of <u>A</u>ll-comer pe<u>R</u>cutaneous c<u>A</u>roti<u>D</u> revascularization <u>I</u>n symptomatic and increased-risk asymptomatic carotid artery stenosis using C<u>G</u>uard[™] <u>M</u>esh-covered embolic prevention stent system</u>

NEW PARADIGM AHEAD