

The CARENET all-comer trial using the CGuard™ micronet-covered carotid embolic prevention stent

6 month data

Piotr Musialek, MD DPhil FESC

Jagiellonian University Dept. of Cardiac & Vascular Diseases John Paul II Hospital, Krakow, Poland

Disclosures

Research / Consulting / Speaker Beureau

Abbott Cardio3 Biosciences InspireMD Medtronic

Effect of the Distal-Balloon Protection System on Stenting **Microembolization During Carotid**

Nadim Al-Mubarak, MD; Gary S. Roubin, MD, PhD; Jiri J. Vitek, MD, PhD; Sriram S. Iyer, MD; Gishel New, MD; Martin B. Leon, MD

10

Sheath

Figure 1. Microembolic profile during unprotected CAS. The mean MES counts during various phases of the procedure are displayed.

Freditation

Hire

Circulation. 2001;104:1999-2002

Postdilation

stent

LEIPZIG

2015

Does Free Cell Area Influence the Outcome in Carotid Artery Stenting?

M. Bosiers,^{1*} G. de Donato,² K. Deloose,¹ J. Verbist,³ P. Peeters,³ F. Castriota,⁴ A. Cremonesi⁴ and C. Setacci⁴

Overview of event rates	elated to the different stents
-------------------------	--------------------------------

n = 3179 consecutive CAS patients

	Total population			Symptom	symptomatic population		Asymptomatic population		
	Patients	All events	Post-procedural events	Patients	All events	Post-procedural events	Patients	All events	Post-procedural events
Stent name									
X-act		1.9%	1.9%		2.2%	2.2%		1.7%	1.7%
Nexstent		3.3%	3.3%		0.0%	0.0%		4.2%	4.2%
Wallstent		2.3%	1.2%		2.3%	1.2%		2.3%	1.2%
Precise		4.1%	3.1%		6.3%	4.9%		2.0%	1.3%
Protégé		3.0%	3.0%	-	6.7%	6.7%		1.4%	1.4%
Acculink		4.2%		S neuro	7.7%	7.1%		1.7%	1.2%
Exponent		11.8%	5.9%		9.1%	9.1%		13.0%	4.3%
Total	3179	2.83%		vents	3.6%	2.73%	1862	2.25%	1.3%
			(str	oke, TI	4)				
			210		rocod	ural			

are <u>POSI-procedural</u>

Eur J Vasc Endovasc Surg Vol 33, February 2007

FREE CELL AREA drives CAS neurologic adverse event (and majority are those during stent healing !)

Free cell area	Total population		Symptomatic population		
	All events	Post- procedural events	All events	Post- procedural events	
<2.5 vs [2.5, 5] <2.5 vs [5, 7.5] <2.5 vs >7.5	1.00 0.054 0.27	1.00 0.072 0.006	1.00 0.048 0.0006	$1.00 \\ 0.024 \\ 2.8 \ 10^{-6}$	

conventional best-in-class Hybrid stent ('open-close-open')

conventional best-in-class **Closed-cell stent**

Rationale of Technology

Conventional Carotid Stent

Plaque protrusion may lead to early and late distal embolization

J. Schofer, P. Musialek et al. TCT 2014

ANY data on incidence of **PLAQUE PROLAPSE** in conventional carotid stents?

P Musialek, LINC 2015

Post-procedural PLAQUE PROLAPSE through conventional stent struts

Suzuki M et al. ESC 2014 Presentation www.escardio.org

81 y.o. Female, Symptomatic

Images: Dr M. Suzuki ESC 2014 www.escardio.org

Eur Heart J. 2014;35(Abstr Suppl):178

DW-MRI:

the <u>unforgiving</u> testimony of what you've done to the TARGET ORGAN...

P Musialek, LINC 2015

The Power of DW-MRI...

48h after LICA-CAS

M. Urbanczyk, P. Banys, Dept. Radiology, JP2 Hospital, Krakow, Poland

<u>Post-procedural</u> Embolization with conventional carotid stents DW-MRI post CAS

Mean total lesion area

CGuard [™] embolic prevention stent

P Musialek, LINC 2015

CGuard[™]– Carotid Embolic Prevention System

System specifications			
Stent type	Nitinol – self expanding		
Micronet aperture size	150-180 μm		
Guidewire	0.014"		
Sizes - Diameter - Length	6-10mm 20-60mm		

Evaluation of PET Mesh Covered Stent in Patients with Carotid Artery Disease

The CARENET-Trial

(CAR otid Embolic protection using microNET)

Joachim Schofer (PI) Piotr Musialek (Co-PI) On behalf of the CARENET Investigators

Joachim Schofer, MD,PhD, Hamburg University CardiovascularCenter, Hamburg Germany Piotr Musialek, MD, PhD, Jagiellonian University Medical College at John Paul II Hospital, Krakow, Poland, Ralf Kolvenbach, MD, PhD, Augusta Hospital, Dusseldorf, Germany, Horst Sievert, MD, PhD, Cardiovascular Center Frankfurt, Frankfurt, Germany

CARENET – Study Design

Study Design:

Prospective, multi-center, single arm, all-comer **Objectives**:

To evaluate the periprocedural safety and efficacy of the CGuard stent in the treatment of carotid lesions in thirty consecutive patients with symptomatic and asymptomatic carotid artery stenosis, suitable for CAS **Sites:**

- Joachim Schofer, Hamburg University Cardiovascular Center
- *Piotr Musialek,* Jagiellonian University Medical College
- Ralf Kolvenbach, Augusta Hospital
- *Horst Sievert,* Cardiovascular Center Frankfurt **Primary Endpoint:**

30 day MACCE (death, stroke, MI)

CARENET – Baseline Characteristics

Baseline characteristics				
	CARENET (n=30)			
Age (years)	71.6 ±7.6			
Male	63.4%			
Symptomatic	33.3 (10)			
BMI	26.4 ±3.9			
Hypertension	83.3% (25)			
Hyperlipidemia	90% (27)			
Diabetes mellitus	23.3% (7)			
Cigarette smoking, current	13.4% (4)			
Prior myocardial infarction	26.7% (8)			

J. Schofer, P. Musialek et al. 2015 (manuscript at review)

CARENET – Procedure Results

Target vessel	
- Left ICA	33.3% (10)
- Right ICA	66.6% (20)
Protection used	
-Distal filter protection	96.6% (29)
-Proximal balloon protection	3.4% (1)
Pre dilatation	70.9% (22)
Post dilatation	77.4% (24)
Post dilatation Pressure (ATM)	13.6 ±4.5
Stent deployed	100% (30)
Procedure success	100% (30)
Stent diameter (Mean)	$8.23 \text{mm} \pm 0.8$
Stent length (Mean)	34.8 mm \pm 5.0
Second stent used	3.33% (1)

LEIPZIG INTERVENTION COURSE

LIN

2015

CARENET – Procedure Results

Angiographic assessment, CARENET (n=30)						
Baseline Final						
Lesion location in left/right ICA	33/67%	-				
Lesion length [mm]	16.94±4.7	-				
MLD [mm]	1.25±0.34	4.82±0.60				
% Diameter stenosis	79.9±5.0	16.9±6.5				
TIMI III flow in the ECA	100%	100%				

J. Schofer, P. Musialek et al. 2015 (manuscript at review)

CARENET Clinical Events

	30 days (n=30)	6 months (n=28*)
MACCE (MI, stroke, death)	(0) 0.0%	(1) 3.6%
MI	(0) 0.0%	(0) 0.0%
stroke	(0) 0.0%	(0) 0.0%
death	(0) 0.0%	(1) 3.6%
Comparative	data from other CAS	Strials
	30 days**	6 months ⁺

	(14 trials)	(3 trials)
MACCE (MI, stroke, death)	5.72%	8.09%

* See patient fluxogram

** Trials included in analysis: ARCHeR pooled, ARMOUR, BEACH, CABERNET, CREATE, EMPIRE, EPIC, MAVERIC 1+2,

MAVERIC International, PRIAMUS, SAPPHIRE, SECURITY, PROFI, ICSS

⁺ Values extrapolated from event curves

J. Schofer, P. Musialek et al. 2015 (manuscript at review)

DW-MRI:

the <u>unforgiving</u> testimony of what you've done to the TARGET ORGAN...

P Musialek, LINC 2015

CGuard [™] embolic prevention stent

P Musialek, LINC 2015

External, blinded CoreLab MRI image analysis and quantification (USA)

CARENET DW-MRI analysis

DW-MRI analysis @ 48 hours					
CARENET (n=27)	PROFI (all) (n=62)	ICSS⁺ (n=56)			
37.0%	66.2 %	68.0%			
0.039 1 0.08	.375	-			
0.445					
	CARENET (n=27) 37.0% 0.039 1 0.08	CARENET (n=27)PROFI (all) (n=62)37.0%66.2%0.039 10.08.375			

≈50% reduction in new ipsilateral lesion incidence

*External Core Lab analysis (US)

Bijuklic et al. *JACC*, 2012; Bonati et. al, *Lancet Neurol* 2010 † bilateral lesions J. Schofer, P. Musialek et al. 2015 (manuscript at review)

CARENET DW-MRI analysis

DW-MRI analysis @ 48 hours					
	CARENET (n=27)	PROFI (all) (n=62)	ICSS[†] (n=56)		
Incidence of new ipsilateral lesions	37.0%	66.2%	68.0%		
Average lesion volume (cm ³)	0.039	0.375	-		
Maximum lesion volume (cm ³)	0.415)			

>10-fold reduction in cerebral lesion volume

*External Core Lab analysis (US)

Bijuklic et al. *JACC*, 2012; Bonati et. al, *Lancet Neurol* 2010 † bilateral lesions J. Schofer, P. Musialek et al. 2015 (manuscript at review)

CARENET – DW-MRI analysis

CARENET: DW-MRI analysis

DW-MRI analysis @ 48 hours*

* see patient fluxogram Bijuklic et al. *JACC*, 2012;59

CARENET vs. PROFI

* See patient fluxogram Bijuklic et al. *JACC*, 2012;59

CARENET: **30-day** DW-MRI analysis^{*}

All but one peri-procedural ipsilateral lesions RESOLVED

DW-MRI analysis @ 30 days*				
Incidence of new ipsilateral lesions	1			
Average lesion volume (cm ³)	0.08 ± 0.00			
Permanent lesions at 30 days	1			

*External Core Lab analysis (US)

* see patient fluxogram

J. Schofer, P. Musialek et al. 2015 (manuscript at review)

CGuard: Long-term Stent Evaluation

Routine Duplex Doppler ultrasound

at discharge, 30 days, 6 and 12 months and then yearly

(Intravascular ultrasound)

• (CT angiography)

J. Schofer, P. Musialek et al. 2015 (manuscript at review)

Initial series of IVUS CGuard[™] studies suggests...

ullet Excellent stent expansion and apposition llet

ZERO tissue protrusion though mesh-and-struts \mathbf{V}

5 months follow-up

Piotr Musialek @ LINC 2015

RCCA & RICA

LICA CGuard 5 months follow-up

IN C

CGuard: Endovascular Solution For All-comers

Piotr Musialek @ LINC 2015

CAS (and CEA) are –and will remain– emboli-generating procedures

00

P Musialek @ LINC 2015

2015

CAS: 2010 Vision

Kosmas I. Paraskevas, MD,^a Dimitri P. Mikhailidis, MD, FFPM, FRCPath, FRCP,^b and Frank J. Veith, MD, FACS,^{c,d} Athens, Greece; London, United Kingdom; Cleveland, Ohio; and New York, NY

Improved technology for CAS — better EPDs (flow reversal and proximal occlusion) and better stents (membrane-covered, ultra-closed cell, and biodegragable). Several issues may improve CAS outcomes, such as the introduction of new and better stents. An ex vivo study showed that use of a polyurethane membrane-covered stent resulted in lower cerebral embolization rates.⁶⁹ Membrane-covered stents also have the potential to reduce the incidence of late embolization, that is, after the removal of the EPD.⁷⁰ Furthermore, proximal EPDs (such as the Mo.Ma flow interruption device [Invatec, Roncadelle, Italy]⁷¹ or the Parodi flow reversal Anti-Emboli System [W.L. Gore, Flagstaff, AZ])⁷² offer the advantage of cerebral protection during most of the procedure.

JOURNAL OF VASCULAR SURGERY Volume 52, Number 5

CGuard embolic prevention stent system

- Compatible with <u>ALL</u> EPD types V
- Deliverable in hard-access anatomies V
- Optimal visibility V
- Reliable, predictable, and extremely precise V
 placement
 No indication of foreshortening V
- Radial strength sufficient for v. hard lesions ${f V}$

CGuard embolic prevention stent system

Full respect of the carotid bifurcation anatomy 'endovascular anatomic reconstruction'

Optimal performance across all lesion subsets (including high calcium/thrombus/string)

Piotr Musialek @ LINC 2015

CARENET Conclusions

- CARENET Trial demonstrated unprecedented safety of the CGuard stent, with 30-day MACCE rate of 0%.
- The CGuard device success and procedure success rate were 100%.
- Majority of patients treated with CGuard have zero ipsilateral lesions on post-procedural DWI.

CARENET Conclusions

- 10-fold reduction in average lesion volume when compared to conventional carotid stents.
- All but one peri-procedural lesion had resolved completely by 30 days.
- CARENET data indicates that CGuard may offer unique clinical benefits for patients undergoing CAS – with unprecedented safety.