

# Carotid artery revascularization:

# A systematic review and meta-analysis comparing clinical outcomes of second vs. first generations stents

Adam Mazurek MD PhD

on behalf of **CARMEN** Collaborators

**CA**rotid **R**evascularization systematic review and **ME**ta-a**N**alysis



# Disclosure

Speaker name:

Adam Mazurek MD, PhD

I have the following potential conflicts of interest to report:

- Consulting
- Employment in industry
- Stockholder of a healthcare company
- Owner of a healthcare company
- Other(s)

✓ I do not have any potential conflict of interest

# Introduction



 Comparisons of data in individual studies suggest that the use of second-generation carotid stents (SGS; dual-layer, mesh-covered) may improve clinical outcomes.



Casper/RoadSaver

Gore Carotid Stent

CGuard MicroNET Stent

• This has not been systematically evaluated.



# Purpose

# Are the 30-day and 12-month outcomes for SGS *different* than those for first-generation stents (FGS) ?

2. Is there a '*class effect*' for SGS ?

 FGS – first generation stents
 SGS – second generation stents (mesh/dual-layer)

# **METHODS**



We performed a systematic review and meta-analysis (PRISMA\* methodology) of clinical studies that have used First-generation carotid stents (FGS; open or close-cell) and Second-generation carotid stents (SGS).

- 1. Evaluation of typically reported 30-day and 12-month endpoints.
- 3. PubMed search ('carotid' + 'stent' + 'trial' or 'study').
- 4. Prespecified criteria for record initial screening (CADIMA<sup>#</sup>).
- 5. Prespecified criteria for study eligibility.
- 6. Cumulative data integration.
- 7. Random effect model meta-analysis.
- 8. Endpoints compared for FGS (open/close-cell) vs SGS (as a group and per individual stent types RoadSaver/Casper Stent, Gore Stent, CGuard MicroNET Stent)



# Carotid revascularization outcomes of interest

- Random search for typical 30-day outcomes and 12-month outcomes in carotid revascularization studies (2004-2019)
- Identification of: 50 studies with 30-day outcomes
   50 studies with 12-month outcomes
- Typically-reported **30-day outcomes**: **DEATH (D)** 
  - (any) STROKE (S)
  - **MYOCARDIAL INFARCTION (MI)**
- Typically-reported 12-mo outcomes: ipsilateral STROKE (IS) RESTENOSIS (R/ISR)

#### **CARMEN** Systematic review and meta-analysis flowchart (PRISMA)

Identification

Screening



LEIPZIG INTERVENTIONAL COURSE LINC 2021

#### **CARMEN** Systematic review and meta-analysis flowchart (PRISMA)

LEIPZIG INTERVENTIONAL COURSE

2021



### Data Quality: Study Bias Systematic Assessment



Severe bias (red) was reason for rejection.

**CARMEN** Collaboration @ LINC 2021

LEIPZIG INTERVENTIONAL COURSE

2021

### Stent type comparisons: Pooled populations characteristics



|                             | FGS        | SGS        | р     | Open-cell<br>FGS | Close-cell<br>FGS | p open<br>vs close | p open<br>vs SGS | p close<br>vs SGS |
|-----------------------------|------------|------------|-------|------------------|-------------------|--------------------|------------------|-------------------|
| No of studies               | 98         | 14         | -     | 29               | 12                | -                  | -                | -                 |
| No of patients              | 65,891*    | 2,152*     | -     | 20,676*          | 7,598*            | -                  | -                | -                 |
| Age [mean] ± SD             | 70.1 (2.8) | 71.9 (2.5) | 0.02  | 70.4 (3.2)       | 69.3 (3.4)        | 0.60               | 0.32             | 0.13              |
| Male [%]                    | 68%        | 73%        | 0.046 | 68%              | 66%               | 0.92               | 0.12             | 0.15              |
| Symptomatic [%]             | 45%        | 41%        | 0.40  | 43%              | 50%               | 0.61               | 0.94             | 0.45              |
| Diabetic [%]                | 34%        | 32%        | 0.43  | 35%              | 36%               | 0.71               | 0.88             | 0.61              |
| CAD [%]                     | 51%        | 47%        | 0.55  | 48%              | 55%               | 0.59               | 0.98             | 0.98              |
| AF [%]                      | 6%         | 3%         | 0.37  | 3%               | ND                | -                  | 0.99             | -                 |
| Contralateral occlusion [%] | 10%        | 16%        | 0.22  | 10%              | 12%               | 0.87               | 0.63             | 0.99              |

**FGS** – first generation stents; **SGS** – second generation stents (mesh/dual-layer)

\*Data per total number of patients as per published patient characteristics

## 30-day Death/Stroke/MI: FGS vs SGS





# 30-day Death/Stroke/MI: open-cell FGS vs SGS





### 30-day Death/Stroke/MI: close-cell FGS vs SGS





### 30-day Stroke: FGS vs SGS





### 12-month Ipsilateral Stroke/ISR: FGS vs SGS





### 12-month Ipsilateral Stroke: FGS vs SGS





### 12-month **ISR**: FGS vs SGS







# SGS vs <u>CEA</u>

SGS – second generation stents (mesh/dual-layer)



# Purpose

# Is there a difference in **30-day 12-month** outcomes

# for SGS vs CEA ?



# CEA vs SGS: Populations Characteristics



|                                                                                               | RCTs CEA   | VQI CEA | SGS        | p RCTs-CEA<br>vs SGS | p VQI-CEA<br>vs SGS |  |
|-----------------------------------------------------------------------------------------------|------------|---------|------------|----------------------|---------------------|--|
| No of studies                                                                                 | 9          | 2       | 14         | -                    | -                   |  |
| No of patients                                                                                | 5,335*     | 95,776* | 2,152*     | -                    | -                   |  |
| Age [mean] ± SD                                                                               | 69.4 (1.5) | 71      | 71.9 (2.5) | 0.03                 | -                   |  |
| Male [%]                                                                                      | 69%        | 61%     | 73%        | 0.71                 | 0.29                |  |
| Symptomatic [%]                                                                               | 37%        | 23%     | 41%        | 0.75                 | 0.83                |  |
| Diabetic [%]                                                                                  | 29%        | 35%     | 32%        | 0.44                 | 0.99                |  |
| CAD [%]                                                                                       | 41%        | 27%     | 47%        | 0.75                 | 0.35                |  |
| AF [%]                                                                                        | 3%         | nd      | 3%         | 1.0                  | -                   |  |
| Contralateral                                                                                 |            |         |            |                      |                     |  |
| occlusion [%]                                                                                 | 7%         | nd      | 16%        | 0.56                 | -                   |  |
| <b>FGS</b> – first generation stents; <b>SGS</b> – second generation stents (mesh/dual-layer) |            |         |            |                      |                     |  |

\* as per published characteristics of study patients

# 30-day Death/Stroke/MI: RCT CEA vs SGS











### 30-day Stroke: RCT CEA vs SGS

LEIPZIG INTERVENTIONA COURSE



### 30-day Stroke: VQI CEA vs SGS





### 1-year Ipsilateral Stroke/Restenosis: RCT CEA vs SGS





### 1-year Ipsilateral Stroke/Restenosis: VQI CEA vs SGS





# 1-year Ipsilateral Stroke: RCT CEA vs SGS







### 1-year Ipsilateral Stroke: VQI CEA vs SGS



| Risk   | 95%-CI           | Risk Ratio<br>[95% CI] |
|--------|------------------|------------------------|
| 0.0036 | [0.0031; 0.0041] | 1                      |
| 0.0031 | [0.0000; 0.0091] | 0.85 [0.74-0.96]       |
| 0.0026 | [0.0000; 0.0127] | 0.71 [0.56-0.85]       |
| 0.0172 | [0.0023; 0.0322] | 4.79 [4.62-4.97]       |
| 0.0000 | [0.0000; 0.0062] | 0.00 [0.00-0.11]       |
|        |                  |                        |

### 1-year Restenosis: RCT CEA vs SGS







### 1-year Restenosis: VQI CEA vs SGS





# Conclusions: 30-day outcomes

- Casper/RoadSaver and CGuard MicroNET Stent superior to FGS as a group (and superior to both open- and close-cell stents)
- **J** stroke with Casper/RoadSaver and **J** stroke with CGuard MicroNET Stent vs RCT-CEA and VQI-CEA

• NO class-effect of SGS in relation to FGS or CEA





#### • SGS superior to FGS

outcome driven by

 $\downarrow$  in ipsi stroke with CGuard MiroNET Stent  $\downarrow$  in restenosis with CGuard MiroNET Stent

- SGS similar to CEA in 12-month ipsilateral stroke
- SGS have a differential effect on restenosis in relation to CEA
   ↑ restenosis with Casper/RoadSaver and Gore Stent
   ↓ restenosis with CGuard MicroNET Stent
- NO class-effect in SGS