

Carotid Revascularization 2024: Key Factors to Consider

Piotr Musialek

Jagiellonian University Dept. of Cardiac & Vascular Diseases John Paul II Hospital, Kraków, Poland

Disclosure

Speaker name: Piotr Musialek

I have the following potential conflicts of interest to report:

V Consulting/Proctoring: Abbott Vascular, Balton, Gore, InspireMD, Medtronic

- Employment in industry
- Stockholder in a healthcare company
- Owner of a healthcare company

Others: ESC Stroke Council Scientific Documents Task Force
 Polish Cardiac Society Board Representative for Stroke
 and Vascular Interventions

CGUARDIANS FDA IDE Co-PI

Key Factors to Consider

• Whether?

• How?

• Does "this" Patient require carotid revasc. to \downarrow Stroke Risk ?

HOW to BEST revascularize "this" Patient ?

Stroke risk management in carotid atherosclerotic disease: A Clinical Consensus Statement of the ESC Council on Stroke and the ESC Working Group on Aorta and Peripheral Vascular Diseases

Piotr Musialek ¹, Leo H Bonati ², Richard Bulbulia ³ ⁴, Alison Halliday ⁴, Birgit Bock ⁵, Laura Capoccia ⁶, Hans-Henning Eckstein ⁷, Iris Q Grunwald ⁸ ⁹, Peck Lin Lip ¹⁰, Andre Monteiro ¹¹, Kosmas I Paraskevas ¹², Anna Podlasek ⁹ ¹³, Barbara Rantner ¹⁴, Kenneth Rosenfield ¹⁵, Adnan H Siddiqui ¹⁶ ¹⁷, Henrik Sillesen ¹⁸, Isabelle Van Herzeele ¹⁹, Tomasz J Guzik ²⁰ ²¹, Lucia Mazzolai ²², Victor Aboyans ²³, Gregory Y H Lip ²²

ESC Stroke Council CONSENSUS Document

life expectancy, co-morbidities and patient-specific stroke risk modifiers (e.g. family history of stroke, diabetes)

> Thromb Haemost. 2022 Sep 28. doi: 10.1055/a-1952-1159. Online ahead of print.

LEIPZIG INTERVENTIONAL COURSE LINC 2024

Carotid Stenosis and Stroke: Medicines, Stents, Surgery - "Wait-and-See" or Protect?

Piotr Musialek ¹, Kenneth Rosenfield ², Adnan Siddiqui ³, Iris Q Grunwald ⁴

Not a "benign" condition...

The Journal of Cardiovascular Surgery 2024 mese;65(0):000-000 DOI:10.23736/S0021-9509.24.13093-5

ORIGINAL ARTICLE

NOVEL DATA IN CAROTID-RELATED STROKE TREATMENT AND PREVENTION

Outcomes in acute carotid-related stroke eligible for mechanical reperfusion: SAFEGUARD-STROKE Registry

Lukasz TEKIELI ^{1, 2, 3} *, Karolina DZIERWA ⁴, Iris Q. GRUNWALD ^{5, 6}, Adam MAZUREK ^{1, 2}, Malgorzata URBANCZYK-ZAWADZKA ⁷, Lukasz WIEWIORKA ⁷, R. Pawel BANYS ⁷, Wladyslaw DABROWSKI ³, Anna PODLASEK ^{8, 9}, Ewa WEGLARZ ^{3, 10}, Justyna STEFANIAK ¹¹, Rafal T. NIZANKOWSKI ¹², Piotr MUSIALEK ^{1, 2}

¹Stroke Thrombectomy-Capable Center, St. John Paul II Hospital, Krakow, Poland; ²Department of Cardiac and Vascular Diseases, Jagiellonian University Medical College, Krakow, Poland; ³Department of Interventional Cardiology, Jagiellonian University Medical College, Krakow, Poland; ⁴Cardiovascular Imaging Laboratory, St. John Paul II Hospital, Krakow, Poland; ⁵Division of Imaging Science and Technology, School of Medicine, University of Dundee, Dundee, UK; ⁶Department of Radiology, University of Dundee Ninewells Hospital, Dundee, UK; ⁷Department of Radiology, St. John Paul II Hospital, Krakow, Poland; ⁸Tayside Innovation MedTech Ecosystem (TIME), University of Dundee, UK; ⁹Precison Imaging Beacon, Radiological Sciences, University of Nottingham, Nottingham, UK; ¹⁰Department of Nursing, Faculty of Health Sciences, Jagiellonian University Medical College, Krakow, Poland; ¹¹Department of Bioinformatics and Telemedicine, Jagiellonian University Medical College, Krakow, Poland; ¹²Accreditation Council, National Center for Health Quality Assessment, Krakow, Poland

*Corresponding author: Lukasz Tekieli, Department of Cardiac and Vascular Diseases, St. John Paul II Hospital, Ul. Pradnicla 80, 31-202 Krakow, Poland. E-mail: luk.tekieli@gmail.com

L. Tekieli, et al. J Cardiovasc Surg 2024 (in press)

L. Tekieli, et al. J Cardiovasc Surg 2024 (in press)

LEIPZIG INTERVENTIONAL COURSE

L. Tekieli, et al. J Cardiovasc Surg 2024 (in press)

Carotid-Related STROKES

Should be Prevented

(rather than experienced...)

You can also CAUSE Stroke

while treating the carotid...

Decision-Making in Carotid Stenosis

Podlasek, Grunwald, Musiałek 2021

Decision-Making in Carotid Stenosis

TYPE OF INTERVENTION

(CAS, TCAR, CEA)

Podlasek, Grunwald, Musiałek 2021

Long-term outcomes of stenting and endarterectomy for symptomatic carotid stenosis: a preplanned pooled analysis of individual patient data

Thomas G Brott^{*}, David Calvet^{*}, George Howard, John Gregson, Ale Algra, Jean-Pierre Becquemin, Gert J de Borst, Richard Bulbulia, Hans-Henning Eckstein, Gustav Fraedrich, Jacoba P Greving, Alison Halliday, Jeroen Hendrikse, Olav Jansen, Jenifer H Voeks, Peter A Ringleb[†], Jean-Louis Mas[†], Martin M Brown[†], Leo H Bonati[†], on behalf of the Carotid Stenosis Trialists' Collaboration

OD FOT 4			Periprocedural Period	N Engl J Med 2	010;363:11
CREST-1	CAS (N=1262)	CEA (N=1240)	Absolute Treatment Effect of CAS vs. CEA (95% CI)	Hazard Ratio for CAS vs. CEA (95% CI)	P Value
	no. of patie	nts (% ±SE)	percentage points		
Death	9 (0.7±0.2)	4 (0.3±0.2)	0.4 (-0.2 to 1.0)	2.25 (0.69 to 7.30)†	0.18†
Stroke					
Any	52 (4.1±0.6)	29 (2.3±0.4)	1.8 (0.4 to 3.2)	1.79 (1.14 to 2.82)	0.01
Major ipsilateral	11 (0.9±0.3)	4 (0.3±0.2)	0.5 (-0.1 to 1.2)	2.67 (0.85 to 8.40)	0.09
Major nonipsilateral‡	0	4 (0.3±0.2)	NA	NA	NA
Minor ipsilateral	37 (2.9±0.5)	17 (1.4±0.3)	1.6 (0.4 to 2.7)	2.16 (1.22 to 3.83)	0.009
Minor nonipsilateral	4 (0.3±0.2)	4 (0.3±0.2)	0.0 (-0.4 to 0.4)	1.02 (0.25 to 4.07)	0.98†
Myocardial infarction	14 (1.1±0.3)	28 (2.3±0.4)	-1.1 (-2.2 to -0.1)	0.50 (0.26 to 0.94)	0.03
Any periprocedural stroke or postprocedural ipsilateral stroke	52 (4.1±0.6)	29 (2.3±0.4)	1.8 (0.4 to 3.2)	1.79 (1.14 to 2.82)	0.01
Major stroke	11 (0.9±0.3)	8 (0.6±0.2)	0.2 (-0.5 to 0.9)	1.35 (0.54 to 3.36)	0.52
➡ Minor stroke	41 (3.2±0.5)	21 (1.7±0.4)	1.6 (0.3 to 2.8)	1.95 (1.15 to 3.30)	0.01
Any periprocedural stroke or death or post- procedural ipsilateral stroke	55 (4.4±0.6)	29 (2.3±0.4)	2.0 (0.6 to 3.4)	1.90 (1.21 to 2.98)	0.005
Primary end point (any periprocedural stroke, myocardial infarction, or death or postprocedural ipsilateral stroke)	66 (5.2±0.6)	56 (4.5±0.6)	0.7 (-1.0 to 2.4)	1.18 (0.82 to 1.68)	0.38

			Periprocedural Period	N Engl J Med 2010;363:11-23	
CREST-1	CAS (N=1262)	CEA (N=1240)	Absolute Treatment Effect of CAS vs. CEA (95% CI)	Hazard Ratio for CAS vs. CEA (95% CI)	P Value
	no. of patie	nts (% ±SE)	percentage points		
Death	9 (0.7±0.2)	4 (0.3±0.2)	0.4 (-0.2 to 1.0)	2.25 (0.69 to 7.30)†	0.18†
Stroke					
Any	52 (4.1±0.6)	29 (2.3±0.4)	1.8 (0.4 to 3.2)	1.79 (1.14 to 2.82)	0.01
Major ipsilateral	11 (0.9±0.3)	4 (0.3±0.2)	0.5 (-0.1 to 1.2)	2.67 (0.85 to 8.40)	0.09
Major nonipsilateral‡	0	4 (0.3±0.2)	NA	NA	NA
Minor ipsilateral	37 (2.9±0.5)	17 (1.4±0.3)	1.6 (0.4 to 2.7)	2.16 (1.22 to 3.83)	0.009
Minor noninsilateral	4 (0.3 0.2)	4 (0.3±0.2)	0.0 (-0.4 to 0.4)	1.02 (0.25 to 4.07)	0 98†
My avail mire on KE eX2	4(1:0.)	was	the or	oblen	.03
Any periprocedural stroke or postprocedural ipsilateral stroke	52 (4.1±0.0)	29 (2.3±0.4)	1.8 (0.4 to 3.2)	1.79 (1.14 to 2.82)	0.01
Major stroke	11 (0.9±0.3)	8 (0.6±0.2)	0.2 (-0.5 to 0.9)	1.35 (0.54 to 3.36)	0.52
➡ Minor stroke	41 (3.2±0.5)	21 (1.7±0.4)	1.6 (0.3 to 2.8)	1.95 (1.15 to 3.30)	0.01
Any periprocedural stroke or death or post- procedural ipsilateral stroke	55 (4.4±0.6)	29 (2.3±0.4)	2.0 (0.6 to 3.4)	1.90 (1.21 to 2.98)	0.005
Primary end point (any periprocedural stroke, myocardial infarction, or death or postprocedural ipsilateral stroke)	66 (5.2±0.6)	56 (4.5±0.6)	0.7 (-1.0 to 2.4)	1.18 (0.82 to 1.68)	0.38

The **TIMING** of Stroke by 30-days with CAS in CREST

 \rightarrow 50.0% Day 0 29 → 17.2%
→ 32.8% Day 1-7 10 The DAY AFTER Day 8-30 19

Hill MD. Circulation. 2012;126:3054–3061.

The **<u>TIMING</u>** of Stroke by 30-days with CAS in CAPTURE

* n= 168 patients; 2 patients each had two strokes

Fairman R. Ann Surg 2007;246:551–558.

			Periprocedural Period	N Engl J Med 2010;363:11-2	
CREST-1	CAS (N=1262)	CEA (N=1240)	Absolute Treatment Effect of CAS vs. CEA (95% CI)	Hazard Ratio for CAS vs. CEA (95% CI)	P Value
	no. of patie	nts (% ±SE)	percentage points		
Death	9 (0.7±0.2)	4 (0.3±0.2)	0.4 (-0.2 to 1.0)	2.25 (0.69 to 7.30)†	0.18†
Stroke					
Any	52 (4.1±0.6)	29 (2.3±0.4)	1.8 (0.4 to 3.2)	1.79 (1.14 to 2.82)	0.01
Major ipsilateral	11 (0.9±0.3)	4 (0.3±0.2)	0.5 (-0.1 to 1.2)	2.67 (0.85 to 8.40)	0.09
Major nonipsilateral‡	0	4 (0.3±0.2)	NA	NA	NA
Minor ipsilateral	37 (2.9±0.5)	17 (1.4±0.3)	1.6 (0.4 to 2.7)	2.16 (1.22 to 3.83)	0.009
Minor noninsilateral	4 (0.3: 0.2)	4 (0.3±0.2)	0.0 (-0.4 to 0.4)	1.02 (0.25 to 4.07)	0 98†
My availante on KE exa		was	the or	oblem	.03
Any periprocedural stroke or postprocedural ipsilateral stroke	52 (4.1±0.0)	29 (2.3±0.4)	1.8 (0.4 to 3.2)	1.79 (1.14 to 2.82)	0.01
Major stroke	11 (0.9±0.3)	8 (0.6±0.2)	0.2 (-0.5 to 0.9)	1.35 (0.54 to 3.36)	0.52
➡ Minor stroke	41 (3.2±0.5)	21 (1.7±0.4)	1.6 (0.3 to 2.8)	1.95 (1.15 to 3.30)	0.01
Any periprocedural stroke or death or post- procedural ipsilateral stroke	55 (4.4±0.6)	29 (2.3±0.4)	2.0 (0.6 to 3.4)	1.90 (1.21 to 2.98)	0.005
Primary end point (any periprocedural stroke, myocardial infarction, or death or postprocedural ipsilateral stroke)	66 (5.2±0.6)	56 (4.5±0.6)	0.7 (-1.0 to 2.4)	1.18 (0.82 to 1.68)	0.38

LEIPZIG INTERVENTIONAL COURSE LINC 2024

The Problem of <u>Conventional</u> (Single-layer) Carotid Stents

LEIPZIG

NTERVENTIONA

2024

P Musialek, G deDonato Carotid Artery Revascularization Using the Endovascular Route In: Carotid Interventions - Practical Guide 2023

Mechanisms to explain the poor results of carotid artery stenting (CAS) in symptomatic patients to date and options to improve CAS outcomes

Kosmas I. Paraskevas, MD,^a Dimitri P. Mikhailidis, MD, FFPM, FRCPath, FRCP,^b and Frank J. Veith, MD, FACS,^{c,d} Athens, Greece; London, United Kingdom; Cleveland, Ohio; and New York, NY

Background: Carotid artery stenting (CAS) is considered by many as an alternative to carotid endarterectomy (CEA) for the management of carotid artery stenosis. However, recent trials demonstrated inferior results for CAS in symptomatic patients compared with CEA. We reviewed the literature to evaluate the appropriateness of CAS for symptomatic carotid artery stenosis and to determine the pathogenetic mechanism(s) associated with stroke following the treatment of such lesions. Based on this, we propose steps to improve the results of CAS for the treatment of symptomatic carotid stenosis. *Methods:* PubMed/Medline was searched up to March 25, 2010 for studies investigating the efficacy of CAS for the management of symptomatic carotid stenosis. Search terms used were "carotid artery stenting," "symptomatic carotid artery stenosis," "carotid endarterectomy," "stroke," "recurrent carotid stenosis," and "long-term results" in various combinations.

Results: Current data suggest that CAS is not equivalent to CEA for the treatment of symptomatic carotid stenosis. Differences in carotid plaque morphology and a higher incidence of microemboli and cerebrovascular events during and after CAS compared with CEA may account for these inferior results.

Conclusions: Currently, most symptomatic patients are inappropriate candidates for CAS. Improved CAS technology referable to stent design and embolic protection strategies may alter this conclusion in the future. (J Vasc Surg 2010;52: 1367-75.)

New Technologies

Carotid 'mesh' stents: 2nd Gen Carotid Stents

P Musialek, G deDonato Carotid Artery Revascularization Using the Endovascular Route In: Carotid Interventions - Practical Guide 2023

New Technologies

Carotid 'mesh' stents

LEIPZIG INTERVENTIONAL COURSE

NC

2024

Name	RoadSaver aka Casper	Gore [®] Carotid Stent	CGuard™ Embolic Prevention Stent
Stent frame	closed-cell Nitinol	open-cell Nitinol	open-cell Nitinol
Mesh position in relation to frame	inside	outside	outside
Mesh material	Nitinol	PTFE	PET
Mesh structure	braided	inter-woven	single-fiber knitted
Pore size	375 μm	500 μm	150 - 180 μm

Clinical Investigation

JOURNAL OF ENDOVASCULAR CONTRACTOR SOCIAL SO

New Technologies

Mechanical Behavior of a New Double-Layer Carotid Stent

Journal of Endovascular Therapy 2015, Vol. 22(4) 634–639 © The Author(s) 2015 Reprints and permissions: sagepub.com/journalsPermissions.nav DOI: 10.1177/1526602815593490 www.jevt.org

Christian Wissgott, MD¹, Wolfram Schmidt, BSE², Christoph Brandt, BSE², Peter Behrens, BSE², and Reimer Andresen, MD¹

Clinical Results and Mechanical Properties of the Carotid CGUARD Double-Layered **Embolic Prevention Stent**

New Technologies

Journal of Endovascular Therapy I-8 © The Author(s) 2016 Reprints and permissions: sagepub.com/journalsPermissions.nav DOI: 10.1177/1526602816671134 www.jevt.org (S)SAGE

The **MOST** 'open' amongst open-cell stents (metallic FRAME) & the MOST 'close' amongst close-cell stents (MicroNet mesh)

LEIPZIG

2024

UNIQUE mechanical properties

RESPECT of anatomy

FULL apposition

NORMAL healing

Randomized Controlled Trial New Technologies The CREST Study stent

Human carotid artery treated using a conventional stent; OCT

OCT Images in: P Musialek, G deDonato Carotid Artery Revascularization Using the Endovascular Route In: Carotid Interventions - Practical Guide 2022 (in press) **MicroNet-Covered Stent**

Human 3D OCT, symptomatic lesion

Level 1 Evidence Embolic Load to the Brain PROFOUND REDUCTION Acculink (CREST study device) MicroNet-Covered Stent - CGuard Per Lesion Per Ipsil Haemisphere Average total volume of lesion(s) - per patient (mm^3) 300 Average lesion volume - per lesion (mm3) 200 600 p=0.038 p=0.007 100 300 Acculink CGuard CGuard Acculink Blinded CoreLab independent anaysis CGuard MicroNET-Covered Stent

New Technologies P Musialek @ LINC 2024

New Technologies

2nd Gen Carotid Stents ('mesh' stents)

- significantly reduce the **incidence** of embolic material in filters
- significantly reduce filter load
- profoundly reduce CAS-related cerebral injury

Karpenko A. *JACC Cardiovasc Interv* 2021;14:2377–87. Nakagawa I. *J Neurointerv Surg* 2023;16:67–72. Squizzato F. *Stroke* 2023;54:2534–41.

New Technologies

2nd Gen Carotid Stents ('mesh' stents)

Clinical Data

Randomized Controlled Trial of Conventional Versus MicroNet-Covered Stent in Carotid Artery Revascularization

12-month clinical data

	.00					MicroNet-	Covered S	Stent
patier ent						 and an a pair of another Real of We of R and Real and another the state of a state and a state of a state 	Acc	ulink
roportion of without eve).75-			p = C	0.015			
ā 0	0.50-	50	100	150	200	250	300	<mark>1</mark> 350
LEIPZIG INTERVENTIONAL COURSE LINC 2024		JACC: C	ARDIOVASCU		OST CAS	VOL. 16, NO.	7, 2023	P Musialek @ LINC 20

Systematic Review Clinical Outcomes of Second- versus First-Generation Carotid Stents: A Systematic Review and Meta-Analysis

Adam Mazurek ^{1,*}, Krzysztof Malinowski ², Kenneth Rosenfield ³, Laura Capoccia ⁴, Francesco Speziale ⁴, Gianmarco de Donato ⁵, Carlo Setacci ⁵, Christian Wissgott ⁶, Pasqualino Sirignano ⁴, Lukasz Tekieli ⁷, Andrey Karpenko ⁸, Waclaw Kuczmik ⁹, Eugenio Stabile ¹⁰, David Christopher Metzger ¹¹, Max Amor ¹², Adnan H. Siddiqui ¹³, Antonio Micari ¹⁴, Piotr Pieniążek ^{1,7}, Alberto Cremonesi ¹⁵, Joachim Schofer ¹⁶, Andrej Schmidt ¹⁷ and Piotr Musialek ^{1,*,†} on behalf of CARMEN (CArotid Revascularization Systematic Reviews and MEta-aNalyses) Investigators

Data of 68,422 patients

from 112 eligible studies

(68.2% men, 44.9% symptomatic)

J. Clin. Med. 2022, 11, 4819. https://doi.org/10.3390/jcm11164819

CARMEN SGS vs FGS Meta-Analysis: Main Findings

CARMEN SGS vs FGS Meta-Analysis: Main Findings

CARMEN SGS vs FGS Meta-Analysis: Main Findings

Open-cell FGS as reference

30-day Death/Stroke/MI

В

Study	Patients Events	Weight	Risk Ratio [95% CI]	
SGS	2531 44	100%	0.31 [0.14-0.48]	
Casper/RoadSaver	585 10	23.1%	0.32 [0.11-0.52]	1
Gore Mesh Stent	311 15	12.3%	1.15 [0.91-1.40]	
CGuard MicroNET Stent	19	64.6%	0.26 [0.10-0.42]	2
ł	leterogene	ity: Γ=84	%, τ ² =0.0003, p<0.01	0

Close-cell FGS as reference

better than worse than Close-cell FGS

D	30-day Death/Stroke/MI					
Study	Patients Events	Weight	Risk Ratio [95% CI]			
SGS	2531 44	100%	0.41 [0.23-0.59]	-		
Casper/RoadSaver	585 10	23.1%	0.42 [0.21-0.63]	and the second		
Gore Mesh Stent	311 15	12.3%	1.53 [1.28-1.79]			
CGuard MicroNET Stent	1635 19	64.6%	0.34 [0.17-0.51]	E.		
ŀ	leterogene	eity: I ² =73	%, 1 ² =0.0002, p<0.01	•		

Systematic Review

Clinical Outcomes of Second- versus First-Generation Carotid Stents: A Systematic Review and Meta-Analysis

Adam Mazurek ^{1,*}, Krzysztof Malinowski ², Kenneth Rosenfield ³, Laura Capoccia ⁴, Francesco Speziale ⁴, Gianmarco de Donato ⁵, Carlo Setacci ⁵, Christian Wissgott ⁶, Pasqualino Sirignano ⁴, Lukasz Tekieli ⁷, Andrey Karpenko ⁸, Waclaw Kuczmik ⁹, Eugenio Stabile ¹⁰, David Christopher Metzger ¹¹, Max Amor ¹², Adnan H. Siddiqui ¹³, Antonio Micari ¹⁴, Piotr Pieniążek ^{1,7}, Alberto Cremonesi ¹⁵, Joachim Schofer ¹⁶, Andrej Schmidt ¹⁷ and Piotr Musialek ^{1,*,†} on behalf of CARMEN (CArotid Revascularization Systematic Reviews and MEta-aNalyses) Investigators

Conclusions: Pooled SGS use was associated with improved short- and long-term clinical results of CAS. Individual SGS types, however, differed significantly in their outcomes, indicating a lack of a "mesh stent" class effect. **Findings from this meta-analysis may provide clinically relevant information** (...).

J. Clin. Med. 2022, 11, 4819. https://doi.org/10.3390/jcm11164819

New Technologies

The Journal of Cardiovascular Surgery 2023 December;64(6):570-82 DOI: 10.23736/S0021-9509.24.12933-3

LATEST TECHNIQUES FOR CAROTID REVASCULARIZATION

Carotid artery revascularization using <u>second generation</u> stents *versus* surgery: a meta-analysis of clinical outcomes

 Adam MAZUREK ^{1,2} *, Krzysztof MALINOWSKI ^{3,4}, Pasqualino SIRIGNANO ⁵, Ralf KOLVENBACH ⁶, Laura CAPOCCIA ⁷, Gianmarco DE DONATO ⁸, Isabelle VAN HERZEELE ⁹, Adnan H. SIDDIQUI ^{10,11}, Tomaso CASTRUCCI ¹², Lukasz TEKIELI ^{1,2,13}, Matteo STEFANINI ¹⁴, Christian WISSGOTT ¹⁵, Kenneth ROSENFIELD ¹⁶, D. Christopher METZGER ¹⁷, Kenneth SNYDER ¹⁸, Andrey KARPENKO ¹⁹,
 Waclaw KUCZMIK ²⁰, Eugenio STABILE ²¹, Magdalena KNAPIK ²², Renato CASANA ²³, Piotr PIENIAZEK ^{1,13}, Anna PODLASEK ^{24,25}, Maurizio TAURINO ⁵, Joachim SCHOFER ²⁶, Alberto CREMONESI ^{27,28}, Horst SIEVERT ²⁹, Andrej SCHMIDT ³⁰, Iris Q. GRUNWALD ^{24,31}, Francesco SPEZIALE ⁷, Carlo SETACCI ⁸, Piotr MUSIALEK ^{1,2}, CArotid Revascularization systematic reviews and MEta-aNalyses (CARMEN) Collaborators

(PROSPERO-CRD42022339789)

SGS vs CEA meta-analysis

Major RCTs Involving CEA

>1. CEA pooled data

SAPPHIRE EVA 3S SPACE-1 ICSS CREST ACST-1 ACT-1 Manhaim **SPACE-2**

> **CARMEN** Collaborators *J Cardiovasc Surg* 2023

SGS vs CEA meta-analysis

LEIPZIG INTERVENTIONAL COURSE LINC 2024

Major RCTs Involving CEA

1. CEA pooled data

SAPPHIRE EVA 3S SPACE-1 ICSS **CREST** ACST-1 ACT-1 Manhaim **SPACE-2**

CEA in Contemporary Clinical Practice

> 2. CEA in Vascular Quality Initiative (VQI) database*

* Dakour-Aridi H, et al. *Ann Vasc Surg.* 2020;65:1-9 Columbo JA, et al. *J Vasc Surg.* 2019;69:104-109

CARMEN Collaborators *J Cardiovasc Surg* 2023

30-day Stroke

LEIPZIG

COURSE

2024

CARMEN Collaborators *J Cardiovasc Surg* 2023

12-month Restenosis

New Technologies

LEIPZIG

COURSE

2024

CARMEN Collaborators *J Cardiovasc Surg* 2023

LATEST TECHNIQUES FOR CAROTID REVASCULARIZATION

Carotid artery revascularization using second generation stents *versus* surgery: a meta-analysis of clinical outcomes

Meta-analytic integration of available clinical data indicates:
1) reduction in stroke but increased restenosis rate with Casper/Roadsaver,
2) reduction in both stroke and restenosis with CGuard MicroNET-covered stent *against contemporary CEA outcomes at 30 days and 12 months used as reference*.

New Technologies

FDA-IDE Clinical Trial:

CGUARDIANS NCT 04900844

C-GUARDIANS Study Design	Prospective, multicenter, single-armed IDE Pivotal trial
Sample size/ Sites	316 Patients; 25 US and European Sites
Primary Endpoint	Composite of death, stroke, MI (DSMI) at 30 days or ipsilateral stroke at 1 year
Sponsor	INSPIRE MD
Principal Investigator Co- Principal Investigator	D. Chris Metzger, MD Piotr Musialek, MD
Study Enrollment Period	July, 2021 to June, 2023 (23 months)
Monitor/ CRO	Hart Clinical Consultants

New Technologies

Patient Demographics

Characteristic	ITT (N = 316)
Age (mean ± SD)	69.0 ± 6.6
% Symptomatic	24.3%
% Male	63.9%
Diabetes Mellitus	41.8%
Hypertension	92.6%
Dyslipidemia	90%
CAD	52.1%
COPD	23.8%
Current Smoker	26.4%
PVD	Chris Metzger @ VIVA 2023

D Chris Metzger @ VIVA 2023

New Technologies

Embolic Protection Utilized

Emboshield NAV 6 Distal embolic protection	261
MoMA Proximal embolic protection	78
Both (Nav6 and MoMa)	24
None	1
D Chris Metzger @ VIVA 2023	

New Technologies

C-GUARDIANS 30-day Results

ITT Analysis (N = 316)	Event rate in % (n)
Death, Stroke or MI*	0.95%(3)
Death [#]	0.32% (1)
Any stroke [#]	0.95% (3)
Major Stroke [#]	0.63% (2)
Minor Stroke [#]	0.32% (1)
MI	0.0% (0)
Death or any stroke*	0.95% (3)
Death or major stroke* D Chris Metzger	@ VIVA 2023 0.63% (2)

* Hierarchical: patient count (each patient first occurrence of the most serious event).

[#] Non-hierarchical: event count (multiple events in each patient are counted individually).

New Technologies

CGUARDIANS FDA-IDE CAS vs. ACST-2 CEA

30-day STROKE 0.95% vs. 2.4% 30-day Death/Stroke/MI 0.95% vs. 3.2%

p=0.029

Metzger DC. (on behalf of CGUARDIANSFDA-IDE Trial Investigators). 30-Day Results From the C-Guardians Pivotal Trial of the CGuard Carotid Stent System. https://vivafoundation.org/ Halliday A, et al. Second asymptomatic carotid surgery trial (ACST-2): a randomised comparison of carotid artery stenting versus carotid endarterectomy. Lancet 2021;398:1065–73.

New Technologies

Stroke risk management in carotid atherosclerotic disease: A Clinical Consensus Statement of the ESC Council on Stroke and the ESC Working Group on Aorta and Peripheral Vascular Diseases

Piotr Musialek ¹, Leo H Bonati ², Richard Bulbulia ³⁴, Alison Halliday ⁴, Birgit Bock ⁵, Laura Capoccia ⁶, Hans-Henning Eckstein ⁷, Iris Q Grunwald ⁸ ⁹, Peck Lin Lip ³⁰, Andre Monteiro ³¹, Kosmas I Paraskevas 12, Anna Podlasek 9 13, Barbara Rantner 14, Kenneth Rosenfield 15, Adnan H Siddiqui 16 17, Henrik Sillesen 18, Isabelle Van Herzeele 19, Tomasz J Guzik 29 21, Lucia Mazzolai 22, Victor Aboyans 23, Gregory Y H Lip 22

ESC Stroke Council CONSENSUS Document

life expectancy, co-morbidities and patient-specific stroke risk modifiers (e.g. family history of stroke, diabetes)

LATEST TECHNIQUES FOR CAROTID REVASCULARIZATION

Carotid stent as cerebral protector: the arrival of Godot

Piotr MUSIALEK 1, 2 *, Ralf LANGHOFF 3, Matteo STEFANINI 4, William A. GRAY 5, 6, 7

¹Department of Cardiac and Vascular Diseases, Jagiellonian University, Krakow, Poland; ²St. John Paul II Hospital, Stroke Thrombectomy-Capable Center, Krakow, Poland; ³Department of Angiology, Sankt-Gertrauden Hospital, Academic Teaching Hospital of Charité University, Berlin, Germany; ⁴Department of Radiology and Interventional Radiology, Casilino Hospital, Rome, Italy; ⁵Main Line Health, Wynnewood, PA, USA; ⁶Sidney Kimmel School of Medicine, Thomas Jefferson University, Philadelphia, PA, USA; ⁷Lankenau Heart Institute, Wynnewood, PA, USA

*Corresponding author: Piotr Musialek, Department of Cardiac and Vascular Diseases, Jagiellonian University, St. John Paul II Hospital, ul. Pradnicka 80, 31-202 Krakow, Poland. E-mail: pmusialek@szpitaljp2.krakow.pl

With respect to clinical decision-making, it is important to understand that any historic data (such as data obtained using prior-generation devices that were unable to effectively isolate the atherosclerotic lesion material) need to be viewed as having, today, a mostly historical value.

New Technologies P Musialek @ LINC 2024

Mechanisms to explain the poor results of carotid artery stenting (CAS) in symptomatic patients to date and options to improve CAS outcomes

Kosmas I. Paraskevas, MD,^a Dimitri P. Mikhailidis, MD, FFPM, FRCPath, FRCP,^b and Frank J. Veith, MD, FACS,^{c,d} Athens, Greece; London, United Kingdom; Cleveland, Ohio; and New York, NY

Background: Carotid artery stenting (CAS) is considered by many as an alternative to carotid endarterectomy (CEA) for the management of carotid artery stenosis. However, recent trials demonstrated inferior results for CAS in symptomatic patients compared with CEA. We reviewed the literature to evaluate the appropriateness of CAS for symptomatic carotid artery stenosis and to determine the pathogenetic mechanism(s) associated with stroke following the treatment of such lesions. Based on this, we propose steps to improve the results of CAS for the treatment of symptomatic carotid stenosis. *Methods:* PubMed/Medline was searched up to March 25, 2010 for studies investigating the efficacy of CAS for the management of symptomatic carotid stenosis. Search terms used were "carotid artery stenting," "symptomatic carotid artery stenosis," "carotid endarterectomy," "stroke," "recurrent carotid stenosis," and "long-term results" in various combinations.

Results: Current data suggest that CAS is not equivalent to CEA for the treatment of symptomatic carotid stenosis. Differences in carotid plaque morphology and a higher incidence of microemboli and cerebrovascular events during and after CAS compared with CEA may account for these inferior results.

Conclusions: Currently, most symptomatic patients are inappropriate candidates for CAS. Improved CAS technology referable to stent design and embolic protection strategies may alter this conclusion in the future. (J Vasc Surg 2010;52: 1367-75.)

Stroke risk management in carotid atherosclerotic disease: A Clinical Consensus Statement of the ESC Council on Stroke and the ESC Working Group on Aorta and Peripheral Vascular Diseases

Piotr Musialek ¹, Leo H Bonati ², Richard Bulbulia ³ ⁴, Alison Halliday ⁴, Birgit Bock ⁵, Laura Capoccia ⁶, Hans-Henning Eckstein ⁷, Iris Q Grunwald ⁸ ⁹, Peck Lin Lip ¹⁰, Andre Monteiro ¹¹, Kosmas I Paraskevas ¹², Anna Podlasek ⁹ ¹³, Barbara Rantner ¹⁴, Kenneth Rosenfield ¹⁵, Adnan H Siddiqui ¹⁶ ¹⁷, Henrik Sillesen ¹⁸, Isabelle Van Herzeele ¹⁹, Tomasz J Guzik ²⁰ ²¹, Lucia Mazzolai ²², Victor Aboyans ²³, Gregory Y H Lip ²²

ESC Stroke Council CONSENSUS Document

life expectancy, co-morbidities and patient-specific stroke risk modifiers (e.g. family history of stroke, diabetes)

P Musialek @ LINC 2024

• Does "this" Patient require carotid revasc. to \downarrow Stroke Risk ?

HOW to BEST revascularize "this" Patient ?

• Does "this" Patient require carotid revasc. to \downarrow Stroke Risk ?

Plaque Characteristics
Family risk of Stroke?

Others (eg. Diabetes as a strong risk-modifying factor)

HOW to BEST revascularize "this" Patient ?

• Does "this" Patient require carotid revasc. to \downarrow Stroke Risk ?

Plaque Characteristics
Family risk of Stroke?

Others (eg. Diabetes as a strong risk-modifying factor)

• HOW to BEST revascularize "this" Patient ?

- Overall CONTEMPORARY CAS vs. CEA Data
- Center Experience
- Operator Expertise

Does "this" Patient require carotid revasc. to \downarrow Stroke Risk ?

Plaque Characteristics
• Family risk of Stroke?

Others (eg. Diabetes as a strong risk-modifying factor)

• HOW to BEST revascularize "this" Patient ?

- Overall CONTEMPORARY CAS vs. CEA Data
- Center Experience
- Operator Expertise

<u>CEA</u> 'Technical' Issues

<u>CEA</u> 'Technical' Issues

CAS 'Technical' Issues

<u>CEA</u> 'Technical' Issues

<u>CAS</u> 'Technical' Issues

<u>CEA</u> 'Technical' Issues

CAS 'Technical' Issues

- Lesion severity?
- GA vs Local anaesthesia?
- Completion study (Duplex/Angio)?

Misclassification of carotid stenosis severity with area stenosis-based evaluation by computed tomography angiography: impact on erroneous indication to revascularization or patient (lesion) migration to a higher guideline recommendation class as per ESC/ESVS/ESO/SVS and CMS-FDA thresholds

Adv Interv Cardiol 2022; 18, 4 (70): 500–513 DOI: https://doi.org/10.5114/aic.2023.125610

Misclassification of carotid stenosis severity with area stenosis-based evaluation by computed tomography angiography: impact on erroneous indication to revascularization or patient (lesion) migration to a higher guideline recommendation class as per ESC/ESVS/ESO/SVS and CMS-FDA thresholds

Change a constitut bacad desision making in a comptamptic lasis

Figure 4. Effect of replacing – in asymptomatic lesions – cQA diameter stenosis-based measurement of carotid "% stenosis" (reference standard) with CTA-derived area stenosis calculation on lesion (patient) migration to another guideline category.

Adv Interv Cardiol 2022; 18, 4 (70): 500–513 DOI: https://doi.org/10.5114/aic.2023.125610

<u>CEA</u> 'Technical' Issues

• Lesion severity?

- GA vs Local anaesthesia?
- Completion study (Duplex/Angio)?

<u>CAS</u> 'Technical' Issues

- Neuroprotection Type (Prox vs Dist)?
- Stent Type (<u>Anti-Embolic</u>)
- Stent Post-dilatation/Optimization

<u>CEA</u> 'Technical' Issues

• Lesion severity?

- GA vs Local anaesthesia?
- Completion study (Duplex/Angio)?

- **CAS** 'Technical' Issues
- Neuroprotection Type (Prox vs Dist)?
- Stent Type (<u>Anti-Embolic</u>)
- Stent Post-dilatation/Optimization

In conclusion,

The landscape has changed

New Technologies

Improving carotid artery stenting to match carotid endarterectomy: a task accomplished

Piotr Musialek^{1,2*}, MD, DPhil; Kosmas I. Paraskevas³, MD, PhD; Gary S. Roubin⁴, MD, PhD

*Corresponding author: Department of Cardiac & Vascular Diseases, Jagiellonian University, Stroke Thrombectomy-Capable Centre, St. John Paul II Hospital, ul. Pradnicka 80, 31-202, Krakow, Poland. E-mail: pmusialek@szpitaljp2.krakow.pl

There are no scientific reasons today that the carotid artery should remain the last artery in the body "reserved" for preferential open surgery. Today, physicians, and more importantly patients², do have a choice of treatment mode.

CAS with Proximal Protection: How to **OPTIMIZE** Your Outcomes?

Piotr Musialek

Jagiellonian University Dept. of Cardiac & Vascular Diseases John Paul II Hospital, Kraków, Poland

