

MicroNet-Covered Anti-Embolic Stent in Consecutive Increased-Risk Iliac Artery Stenotic Lesions to Reconstruct Anatomy and Guard The Flow: A Multi-Center, Multi-Specialty Study

FLOWGUARD-ILIAC NCT04461717

Piotr Paluszek, MD PhD

on behalf of FLOWGUARD-ILIAC Investigators

Dept. of Vascular Surgery and Endovascular Interventions John Paul II Hospital, Krakow

DISCLOSURE OF RELEVANT FINANCIAL RELATIONSHIPS

I, PIOTR PALUSZEK DO NOT HAVE ANY RELEVANT FINANCIAL RELATIONSHIPS TO DISCLOSE.

IN INCREASED-RISK LESIONS, CONVENTIONAL (SINGLE-LAYER) STENTS USED IN ILIAC ARTERY REVASCULARIZATION HAVE IMPORTANT LIMITATIONS:

IN INCREASED-RISK LESIONS, CONVENTIONAL (SINGLE-LAYER) STENTS USED IN ILIAC ARTERY REVASCULARIZATION HAVE IMPORTANT LIMITATIONS:

• HIGHLY-CALCIFIC STENOSES (RISK OF PERFORATION LIMITS STENT OPTIMIZATION WHILE SUBOPTIMAL EXPANSION IS A RISK FACTOR FOR UNSATISFACTORY RESULT IN RELATION TO THE RISK OF THROMBOSIS AND IN-STENT RESTENOSIS)

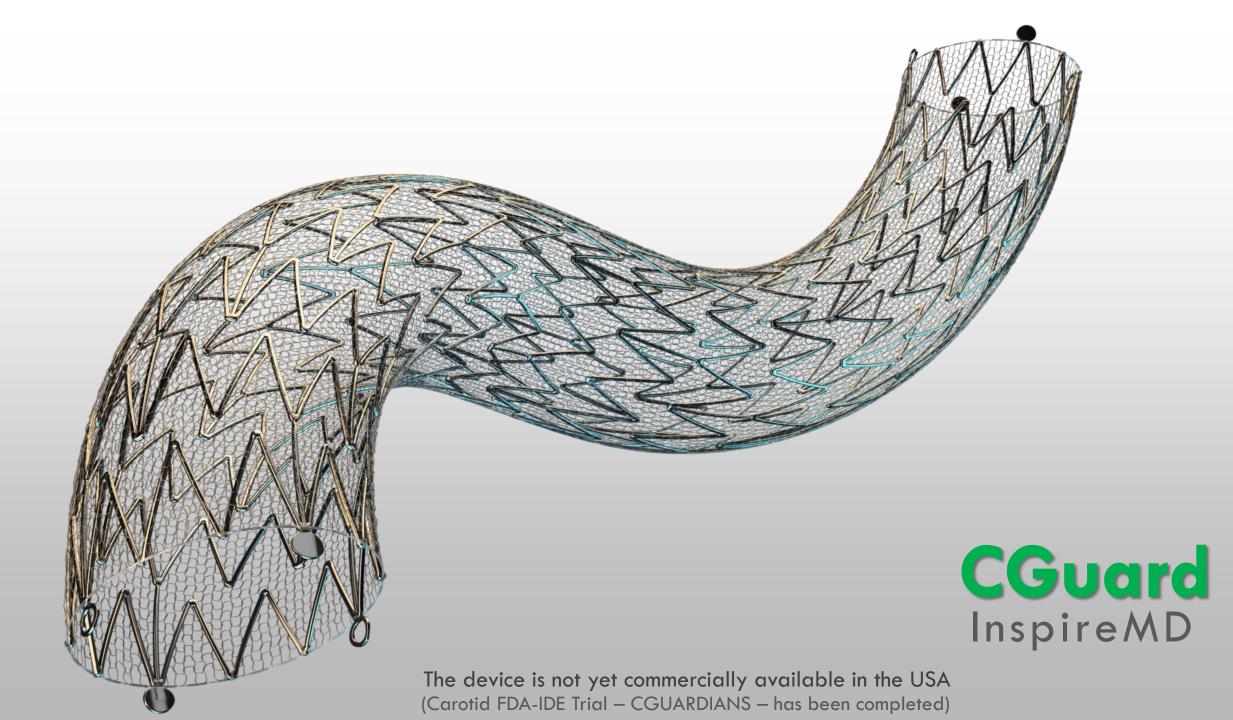
•**THROMBOTIC LESIONS** (WHERE THE "CHEESE-GRATER" EFFECT MAY LEAD TO DISTAL EMBOLISM)

IN INCREASED-RISK LESIONS, CONVENTIONAL (SINGLE-LAYER) STENTS USED IN ILIAC ARTERY REVASCULARIZATION HAVE IMPORTANT LIMITATIONS:

• HIGHLY-CALCIFIC STENOSES (RISK OF PERFORATION LIMITS STENT OPTIMIZATION WHILE SUBOPTIMAL EXPANSION IS A RISK FACTOR FOR UNSATISFACTORY RESULT IN RELATION TO THE RISK OF THROMBOSIS AND IN-STENT RESTENOSIS)

•THROMBOTIC LESIONS (WHERE THE "CHEESE-GRATER" EFFECT MAY LEAD TO DISTAL EMBOLISM)

IN INCREASED-RISK LESIONS, CONVENTIONAL (SINGLE-LAYER) STENTS USED IN ILIAC ARTERY REVASCULARIZATION HAVE IMPORTANT LIMITATIONS:


• HIGHLY-CALCIFIC STENOSES (RISK OF PERFORATION LIMITS STENT OPTIMIZATION WHILE SUBOPTIMAL EXPANSION IS A RISK FACTOR FOR UNSATISFACTORY RESULT IN RELATION TO THE RISK OF THROMBOSIS AND IN-STENT RESTENOSIS)

•THROMBOTIC LESIONS (WHERE THE "CHEESE-GRATER" EFFECT MAY LEAD TO DISTAL EMBOLISM)

The MicroNET-covered stent

- has the ability to sequestrate the atherothrombotic material from the lumen
- shows no foreshortening/elongation
- possesses high radial force with a degree of sealing properties, enabling optimization of the angiographic result paralleled by (level-1 evidence) prevention of embolism

Mazurek at al. Catheter Cardiovasc Interv. 2019 Jul 1;94(1):149-156. Musialek P [for the OPTIMA Trial Investigators]. TCT 2022 Featured Research. https://linkprotect.cudasvc.com/url?a=https%3a%2f%2fd14d5nk8lue86f.cloudfront.net%2fs3fspublic%2f2022-09%2fa355a7ab-6d71-44de-8ecf-6712bd763300.pdf&c=E,1,xK2Fw9O-JSi5KXyomTPyXutja-oloF8cvo8Ajkh1x8MazTh421XPOZs3ZxftkaVmHvbZjcsZgWbXdPCx-9KyxO4KL31rY3OvE2GyUYr1eglWddOwVC2omNpCdUQ&typo=1

FLOWGUARD-ILIAC NCT04461717

Investigator-initiated, industry-independent study

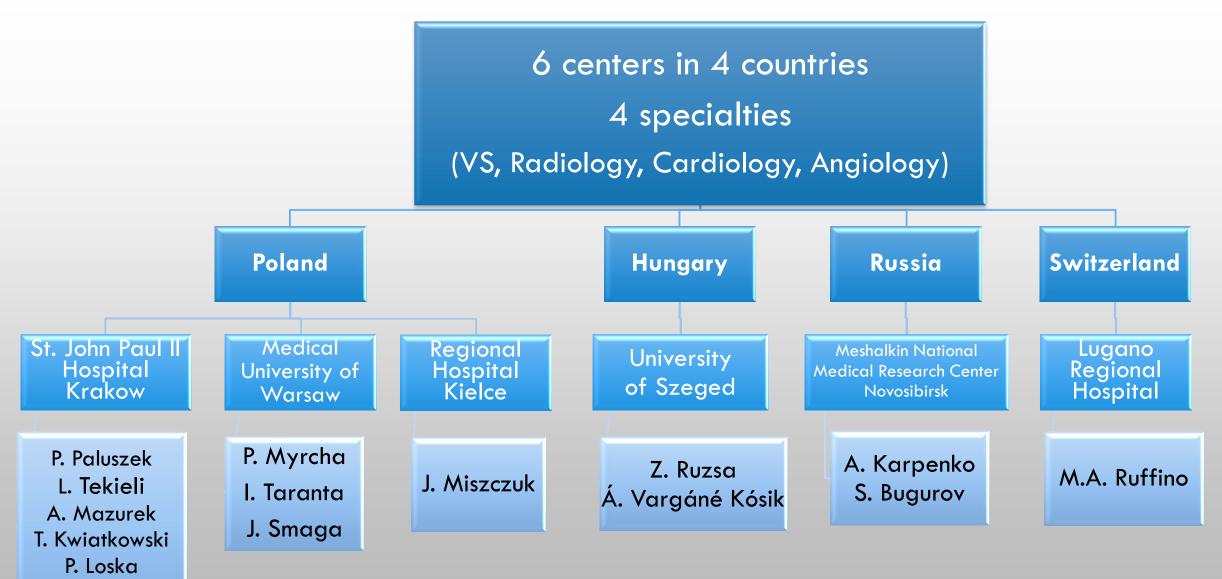
FLOWGUARD-ILIAC NCT04461717

Investigator-initiated, industry-independent study

Aim: to test, in a multi-center, multi-specialty setting (vascular surgery, radiology, cardiology, angiology) use of MicroNET-covered stent to treat <u>increased-risk iliac lesions</u> in consecutive patients undergoing percutaneous iliac artery revascularization (claudicants or iliac-related limb-threatening ischemia)

FLOWGUARD-ILIAC NCT04461717

Investigator-initiated, industry-independent study


Aim: to test, in a multi-center, multi-specialty setting (vascular surgery, radiology, cardiology, angiology) use of MicroNET-covered stent to treat <u>increased-risk iliac lesions</u> in consecutive patients undergoing percutaneous iliac artery revascularization

(claudicants or iliac-related limb-threatening ischemia)

Methods: 1. *Increased-risk lesion*: consensus by the operator intending to perform the case + 2 other operators

- 2. Intention to avoid internal iliac artery covering
- 3. Protocol-recommended drive to 'optimal angiographic result'
- 4. Primary endpoint = target vessel patency at 6mo in absence of study device ISR (CTA recommended)
- 5. Angiographic analysis by an Independent CoreLab Analyst
- 6. Study recruitment: 34 months

FLOWGUARD-ILIAC Centers and Investigators

P. Musialek

NCT04461717

Patients n = 105

- 66 Men (62.9%)
- 39 Women (37.1%)
- Age: 53-83 years (mean 69.5 years)

Claudicants – 93 (88.6%) **Critical limb ischemia** – 12 (11.4%)

Patients n = 105

- 66 Men (62.9%)
- 39 Women (37.1%)
- Age: 53-83 years (mean 69.5 years)

```
Claudicants – 93 (88.6%)
Critical limb ischemia – 12 (11.4%)
```

Coronary artery disease	57 (54.2%)
Congestive Heart Failure	26 (24.7%)
Previous stroke	22 (20.9%)
Hypertension	100 (95.2%)
Dyslipidaemia	99 (94.3%)
Diabetes	43 (40.9%)
Previous PCI/CABG	36 (34.3%)
Previous CAS/CEA	35 (33.3%)
Smoking	Current – 40 (38.1%) Past – 52 (49.5%) Never – 13 (12.4%)

The iliacs treated

The iliacs treated

105 patients 125 arteries 129 MicroNET stents

Side

- Left 36 patients
- Right 60 patients
- Both 9 patients

Arteries

- LCIA 31 (24.8%)
- RCIA 41 (32.8%)
- LEIA 18 (14.4%)
- REIA 35 (28.0%)

The iliacs treated

105 patients
125 arteries
129 MicroNET stents

Side

- Left 36 patients
- Right 60 patients
- Both 9 patients

• REIA - 35 (28.0%)

		D	
Side		l A	7 mr
 Left – 36 patients 	Iominal diameter	Μ	8 mr
• Right – 60 patients 6	– 10 mm	E	0
• Both – 9 patients n	nean 9.2 mm	т	9 mr
- -		E	
Arteries		R	10 n
• LCIA – 31 (24.8%)	ength		20 n
• RCIA – 41 (32.8%) 2	0 – 60 mm	<u> </u>	
• •	nean 37.8 mm	E	30 n
		Ν	

Stents used

D	6 mm	1
l A	7 mm	14
M E	8 mm	27
T	9 mm	29
E R	10 mm	58
L	20 mm	13
E N	30 mm	41
G T	40 mm	54
Ĥ.	60 mm	21

100% intended device use (No stents other than the study device)

Access			
Femoral	83		
Femoral bilateral	10		
Radial	8		
Brachial	4		

Lesion characteristics n=125	Access	
(incl. tandems; CoreLab Analyst verified)	Femoral	83
	Femoral bilateral	10
• Highly–calcific 59 (47.2%)	Radial	8
• Thrombotic (incl. thrombotic dissection)	Brachial	4
58 (46.4%)		
• Other high-risk 8 (6.4%)		

Mean baseline stenosis severity <u>83.8 ± 9.6%</u> (angiolab analysis)

Complex CTO recanalization – 10 arteries (8.1%)

Lesion characteristics n=125	Access		
(incl. tandems; CoreLab Analyst verified)	Femoral		83
	Femoral bilateral		10
• Highly–calcific 59 (47.2%)	Radial		8
• Thrombotic (incl. thrombotic dissection)	Brachial		4
58 (46.4%)	Predilatation	Pos	tdilatation
• Other high-risk 8 (6.4%)	68 arteries (54.4%)	117 a	arteries (<u>93.6%)</u>
	Balloon diameters	Ballo	on diameters
Mean baseline stenosis severity	3.5 – 9 mm	6 – 1	0 mm
<u>83.8 ± 9.6% (</u> angiolab analysis)	average 5.8 mm	avera	nge 7.6 mm
Complex CTO recanalization – 10 arteries (8.1%)	Pressures	Press	ures
	6 – 24 atm	8 – 2	4 atm
	average 12.5 atm	avera	ige 14.1 atm

Procedural results

- Procedure performed with intended device
- Technical success (study device delivery + residual stenosis < 30%)
 - + residual stenosis < 30%)

-100%

- 100%

- Clinical success (technical success + no MACE) 100%
- Residual stenosis: 8.3 ± 6.3 % (Angiographic CoreLab analysis)

Procedural results

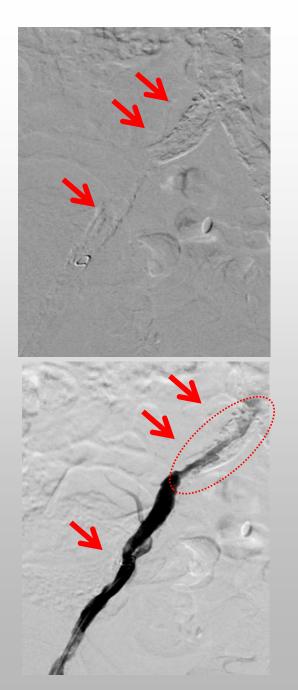
- Procedure performed with intended device
- Technical success (study device delivery + residual stenosis < 30%)
- Clinical success (technical success + no MACE) 100%
- Residual stenosis: <u>8.3 ± 6.3 %</u> (Angiographic CoreLab analysis)

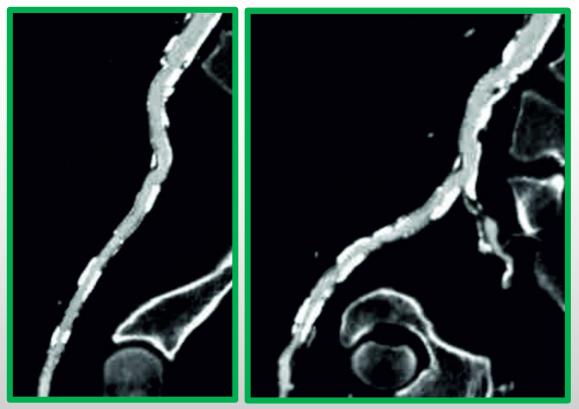
Procedural complications:

Death/MI/Stroke/Transfusion-requiring bleeding: 0 Perforation: 0 Embolism: 0 Groin hematoma: 3 (2.9%)

- 100%

-100%


Thrombus-containing/high-embolic risk lesion


Acute procedural result

Optimal anatomic result @ 6mo CTA follow-up

Highly calcific disease

Optimal anatomic result @ follow-up

Acute procedural result

6 MO OUTCOMES (PRIMARY ENDPOINT) 105 PATIENTS (100%)

Imaging follow-up			
CTA	81 (77.1%)		
Catheter Angiography	3 (2.9 %)		
Doppler-Duplex ultrasound	21 (20.0 %)*		

* One center unable to perform routine protocol-recommended CTA follow-up for financial/logistic reasons; renal disease progression in 6 pts

6 MO OUTCOMES (PRIMARY ENDPOINT) 105 PATIENTS (100%)

Imaging follo	w-up	Clinical (per patient)	
		Claudication distance increase – 98.1%	
СТА	81 (77.1%)	Increase = 30.170	
CIA	81 (77.170)	Death/MI/Stroke – 1	
		(MI)	
Catheter	3 (2.9 %)		
Angiography		Per limb	
		A second static second	
Doppler-Duplex	21 (20.0 %)*	Amputation – 0	
ultrasound		Limb saved – 100%	

* One center unable to perform routine protocol-recommended CTA follow-up for financial/logistic reasons; renal disease progression in 6 pts

6 MO OUTCOMES (PRIMARY ENDPOINT) 105 PATIENTS (100%)

Imaging follo	w-up	Clinical (per patient) Claudication distance	ISR rate (per lesion treated n=125)
CTA	81 (77.1%)	increase – 98.1% Death/MI/Stroke – 1 (MI)	1 (0.8%)
Catheter Angiography	3 (2.9 %)	Per limb	 In addition, one target segment intervention distal to the stent
Doppler-Duplex ultrasound	21 (20.0 %)*	Amputation – 0 Limb saved – 100%	on 6-mo follow up (overlapping MicroNET stent added)

* One center unable to perform routine protocol-recommended CTA follow-up for financial/logistic reasons; renal disease progression in 6 pts

CONCLUSIONS FLOWGUARD-ILIAC NCT04461717

IN INCREASED-RISK ILIAC ARTERY LESIONS WITH CLINICAL INDICATION TO REVASCULARIZATION, THE MICRONET-COVERED STENT USE:

CONCLUSIONS FLOWGUARD-ILIAC NCT04461717

IN INCREASED-RISK ILIAC ARTERY LESIONS WITH CLINICAL INDICATION TO REVASCULARIZATION, THE MICRONET-COVERED STENT USE:

- WAS **ROUTINELY FEASIBLE** (100% INTENDED DEVICE USE, NO OTHER STENT TYPES REQUIRED)
- WAS **SAFE** ALLOWING TO **OPTIMIZE THE ANGIOGRAPHIC RESULT** IN ABSENCE OF EMBOLISM OR OTHER COMPLICATIONS
- WAS ANGIOGRAPHICALLY **EFFECTIVE** (100% ACUTE PROCEDURAL SUCCESS) AND WAS **EFFECTIVE** CLINICALLY
- ACHIEVED 100% PRIMARY PATENCY RATE AT 6 MO (ISR RATE OF 0.8%)